First Commit
This commit is contained in:
@@ -0,0 +1,39 @@
|
||||
#ifndef AnalogBinLogger_h
|
||||
#define AnalogBinLogger_h
|
||||
//------------------------------------------------------------------------------
|
||||
// First block of file.
|
||||
struct metadata_t {
|
||||
unsigned long adcFrequency; // ADC clock frequency
|
||||
unsigned long cpuFrequency; // CPU clock frequency
|
||||
unsigned long sampleInterval; // Sample interval in CPU cycles.
|
||||
unsigned long recordEightBits; // Size of ADC values, nonzero for 8-bits.
|
||||
unsigned long pinCount; // Number of analog pins in a sample.
|
||||
unsigned long pinNumber[123]; // List of pin numbers in a sample.
|
||||
};
|
||||
//------------------------------------------------------------------------------
|
||||
// Data block for 8-bit ADC mode.
|
||||
const size_t DATA_DIM8 = 508;
|
||||
struct block8_t {
|
||||
unsigned short count; // count of data values
|
||||
unsigned short overrun; // count of overruns since last block
|
||||
unsigned char data[DATA_DIM8];
|
||||
};
|
||||
//------------------------------------------------------------------------------
|
||||
// Data block for 10-bit ADC mode.
|
||||
const size_t DATA_DIM16 = 254;
|
||||
struct block16_t {
|
||||
unsigned short count; // count of data values
|
||||
unsigned short overrun; // count of overruns since last block
|
||||
unsigned short data[DATA_DIM16];
|
||||
};
|
||||
//------------------------------------------------------------------------------
|
||||
// Data block for PC use
|
||||
struct adcdata_t {
|
||||
unsigned short count; // count of data values
|
||||
unsigned short overrun; // count of overruns since last block
|
||||
union {
|
||||
unsigned char u8[DATA_DIM8];
|
||||
unsigned short u16[DATA_DIM16];
|
||||
} data;
|
||||
};
|
||||
#endif // AnalogBinLogger_h
|
||||
@@ -0,0 +1,827 @@
|
||||
/**
|
||||
* This program logs data from the Arduino ADC to a binary file.
|
||||
*
|
||||
* Samples are logged at regular intervals. Each Sample consists of the ADC
|
||||
* values for the analog pins defined in the PIN_LIST array. The pins numbers
|
||||
* may be in any order.
|
||||
*
|
||||
* Edit the configuration constants below to set the sample pins, sample rate,
|
||||
* and other configuration values.
|
||||
*
|
||||
* If your SD card has a long write latency, it may be necessary to use
|
||||
* slower sample rates. Using a Mega Arduino helps overcome latency
|
||||
* problems since 13 512 byte buffers will be used.
|
||||
*
|
||||
* Each 512 byte data block in the file has a four byte header followed by up
|
||||
* to 508 bytes of data. (508 values in 8-bit mode or 254 values in 10-bit mode)
|
||||
* Each block contains an integral number of samples with unused space at the
|
||||
* end of the block.
|
||||
*
|
||||
* Data is written to the file using a SD multiple block write command.
|
||||
*/
|
||||
#ifdef __AVR__
|
||||
#include <SPI.h>
|
||||
#include "SdFat.h"
|
||||
#include "sdios.h"
|
||||
#include "FreeStack.h"
|
||||
#include "AnalogBinLogger.h"
|
||||
//------------------------------------------------------------------------------
|
||||
// Analog pin number list for a sample. Pins may be in any order and pin
|
||||
// numbers may be repeated.
|
||||
const uint8_t PIN_LIST[] = {0, 1, 2, 3, 4};
|
||||
//------------------------------------------------------------------------------
|
||||
// Sample rate in samples per second.
|
||||
const float SAMPLE_RATE = 5000; // Must be 0.25 or greater.
|
||||
|
||||
// The interval between samples in seconds, SAMPLE_INTERVAL, may be set to a
|
||||
// constant instead of being calculated from SAMPLE_RATE. SAMPLE_RATE is not
|
||||
// used in the code below. For example, setting SAMPLE_INTERVAL = 2.0e-4
|
||||
// will result in a 200 microsecond sample interval.
|
||||
const float SAMPLE_INTERVAL = 1.0/SAMPLE_RATE;
|
||||
|
||||
// Setting ROUND_SAMPLE_INTERVAL non-zero will cause the sample interval to
|
||||
// be rounded to a a multiple of the ADC clock period and will reduce sample
|
||||
// time jitter.
|
||||
#define ROUND_SAMPLE_INTERVAL 1
|
||||
//------------------------------------------------------------------------------
|
||||
// ADC clock rate.
|
||||
// The ADC clock rate is normally calculated from the pin count and sample
|
||||
// interval. The calculation attempts to use the lowest possible ADC clock
|
||||
// rate.
|
||||
//
|
||||
// You can select an ADC clock rate by defining the symbol ADC_PRESCALER to
|
||||
// one of these values. You must choose an appropriate ADC clock rate for
|
||||
// your sample interval.
|
||||
// #define ADC_PRESCALER 7 // F_CPU/128 125 kHz on an Uno
|
||||
// #define ADC_PRESCALER 6 // F_CPU/64 250 kHz on an Uno
|
||||
// #define ADC_PRESCALER 5 // F_CPU/32 500 kHz on an Uno
|
||||
// #define ADC_PRESCALER 4 // F_CPU/16 1000 kHz on an Uno
|
||||
// #define ADC_PRESCALER 3 // F_CPU/8 2000 kHz on an Uno (8-bit mode only)
|
||||
//------------------------------------------------------------------------------
|
||||
// Reference voltage. See the processor data-sheet for reference details.
|
||||
// uint8_t const ADC_REF = 0; // External Reference AREF pin.
|
||||
uint8_t const ADC_REF = (1 << REFS0); // Vcc Reference.
|
||||
// uint8_t const ADC_REF = (1 << REFS1); // Internal 1.1 (only 644 1284P Mega)
|
||||
// uint8_t const ADC_REF = (1 << REFS1) | (1 << REFS0); // Internal 1.1 or 2.56
|
||||
//------------------------------------------------------------------------------
|
||||
// File definitions.
|
||||
//
|
||||
// Maximum file size in blocks.
|
||||
// The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks.
|
||||
// This file is flash erased using special SD commands. The file will be
|
||||
// truncated if logging is stopped early.
|
||||
const uint32_t FILE_BLOCK_COUNT = 256000;
|
||||
|
||||
// log file base name. Must be six characters or less.
|
||||
#define FILE_BASE_NAME "analog"
|
||||
|
||||
// Set RECORD_EIGHT_BITS non-zero to record only the high 8-bits of the ADC.
|
||||
#define RECORD_EIGHT_BITS 0
|
||||
//------------------------------------------------------------------------------
|
||||
// Pin definitions.
|
||||
//
|
||||
// Digital pin to indicate an error, set to -1 if not used.
|
||||
// The led blinks for fatal errors. The led goes on solid for SD write
|
||||
// overrun errors and logging continues.
|
||||
const int8_t ERROR_LED_PIN = 3;
|
||||
|
||||
// SD chip select pin.
|
||||
const uint8_t SD_CS_PIN = SS;
|
||||
//------------------------------------------------------------------------------
|
||||
// Buffer definitions.
|
||||
//
|
||||
// The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT additional
|
||||
// buffers. QUEUE_DIM must be a power of two larger than
|
||||
//(BUFFER_BLOCK_COUNT + 1).
|
||||
//
|
||||
#if RAMEND < 0X8FF
|
||||
#error Too little SRAM
|
||||
//
|
||||
#elif RAMEND < 0X10FF
|
||||
// Use total of two 512 byte buffers.
|
||||
const uint8_t BUFFER_BLOCK_COUNT = 1;
|
||||
// Dimension for queues of 512 byte SD blocks.
|
||||
const uint8_t QUEUE_DIM = 4; // Must be a power of two!
|
||||
//
|
||||
#elif RAMEND < 0X20FF
|
||||
// Use total of five 512 byte buffers.
|
||||
const uint8_t BUFFER_BLOCK_COUNT = 4;
|
||||
// Dimension for queues of 512 byte SD blocks.
|
||||
const uint8_t QUEUE_DIM = 8; // Must be a power of two!
|
||||
//
|
||||
#elif RAMEND < 0X40FF
|
||||
// Use total of 13 512 byte buffers.
|
||||
const uint8_t BUFFER_BLOCK_COUNT = 12;
|
||||
// Dimension for queues of 512 byte SD blocks.
|
||||
const uint8_t QUEUE_DIM = 16; // Must be a power of two!
|
||||
//
|
||||
#else // RAMEND
|
||||
// Use total of 29 512 byte buffers.
|
||||
const uint8_t BUFFER_BLOCK_COUNT = 28;
|
||||
// Dimension for queues of 512 byte SD blocks.
|
||||
const uint8_t QUEUE_DIM = 32; // Must be a power of two!
|
||||
#endif // RAMEND
|
||||
//==============================================================================
|
||||
// End of configuration constants.
|
||||
//==============================================================================
|
||||
// Temporary log file. Will be deleted if a reset or power failure occurs.
|
||||
#define TMP_FILE_NAME "tmp_log.bin"
|
||||
|
||||
// Size of file base name. Must not be larger than six.
|
||||
const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1;
|
||||
|
||||
// Number of analog pins to log.
|
||||
const uint8_t PIN_COUNT = sizeof(PIN_LIST)/sizeof(PIN_LIST[0]);
|
||||
|
||||
// Minimum ADC clock cycles per sample interval
|
||||
const uint16_t MIN_ADC_CYCLES = 15;
|
||||
|
||||
// Extra cpu cycles to setup ADC with more than one pin per sample.
|
||||
const uint16_t ISR_SETUP_ADC = PIN_COUNT > 1 ? 100 : 0;
|
||||
|
||||
// Maximum cycles for timer0 system interrupt, millis, micros.
|
||||
const uint16_t ISR_TIMER0 = 160;
|
||||
//==============================================================================
|
||||
SdFat sd;
|
||||
|
||||
SdBaseFile binFile;
|
||||
|
||||
char binName[13] = FILE_BASE_NAME "00.bin";
|
||||
|
||||
#if RECORD_EIGHT_BITS
|
||||
const size_t SAMPLES_PER_BLOCK = DATA_DIM8/PIN_COUNT;
|
||||
typedef block8_t block_t;
|
||||
#else // RECORD_EIGHT_BITS
|
||||
const size_t SAMPLES_PER_BLOCK = DATA_DIM16/PIN_COUNT;
|
||||
typedef block16_t block_t;
|
||||
#endif // RECORD_EIGHT_BITS
|
||||
|
||||
block_t* emptyQueue[QUEUE_DIM];
|
||||
uint8_t emptyHead;
|
||||
uint8_t emptyTail;
|
||||
|
||||
block_t* fullQueue[QUEUE_DIM];
|
||||
volatile uint8_t fullHead; // volatile insures non-interrupt code sees changes.
|
||||
uint8_t fullTail;
|
||||
|
||||
// queueNext assumes QUEUE_DIM is a power of two
|
||||
inline uint8_t queueNext(uint8_t ht) {
|
||||
return (ht + 1) & (QUEUE_DIM -1);
|
||||
}
|
||||
//==============================================================================
|
||||
// Interrupt Service Routines
|
||||
|
||||
// Pointer to current buffer.
|
||||
block_t* isrBuf;
|
||||
|
||||
// Need new buffer if true.
|
||||
bool isrBufNeeded = true;
|
||||
|
||||
// overrun count
|
||||
uint16_t isrOver = 0;
|
||||
|
||||
// ADC configuration for each pin.
|
||||
uint8_t adcmux[PIN_COUNT];
|
||||
uint8_t adcsra[PIN_COUNT];
|
||||
uint8_t adcsrb[PIN_COUNT];
|
||||
uint8_t adcindex = 1;
|
||||
|
||||
// Insure no timer events are missed.
|
||||
volatile bool timerError = false;
|
||||
volatile bool timerFlag = false;
|
||||
//------------------------------------------------------------------------------
|
||||
// ADC done interrupt.
|
||||
ISR(ADC_vect) {
|
||||
// Read ADC data.
|
||||
#if RECORD_EIGHT_BITS
|
||||
uint8_t d = ADCH;
|
||||
#else // RECORD_EIGHT_BITS
|
||||
// This will access ADCL first.
|
||||
uint16_t d = ADC;
|
||||
#endif // RECORD_EIGHT_BITS
|
||||
|
||||
if (isrBufNeeded && emptyHead == emptyTail) {
|
||||
// no buffers - count overrun
|
||||
if (isrOver < 0XFFFF) {
|
||||
isrOver++;
|
||||
}
|
||||
|
||||
// Avoid missed timer error.
|
||||
timerFlag = false;
|
||||
return;
|
||||
}
|
||||
// Start ADC
|
||||
if (PIN_COUNT > 1) {
|
||||
ADMUX = adcmux[adcindex];
|
||||
ADCSRB = adcsrb[adcindex];
|
||||
ADCSRA = adcsra[adcindex];
|
||||
if (adcindex == 0) {
|
||||
timerFlag = false;
|
||||
}
|
||||
adcindex = adcindex < (PIN_COUNT - 1) ? adcindex + 1 : 0;
|
||||
} else {
|
||||
timerFlag = false;
|
||||
}
|
||||
// Check for buffer needed.
|
||||
if (isrBufNeeded) {
|
||||
// Remove buffer from empty queue.
|
||||
isrBuf = emptyQueue[emptyTail];
|
||||
emptyTail = queueNext(emptyTail);
|
||||
isrBuf->count = 0;
|
||||
isrBuf->overrun = isrOver;
|
||||
isrBufNeeded = false;
|
||||
}
|
||||
// Store ADC data.
|
||||
isrBuf->data[isrBuf->count++] = d;
|
||||
|
||||
// Check for buffer full.
|
||||
if (isrBuf->count >= PIN_COUNT*SAMPLES_PER_BLOCK) {
|
||||
// Put buffer isrIn full queue.
|
||||
uint8_t tmp = fullHead; // Avoid extra fetch of volatile fullHead.
|
||||
fullQueue[tmp] = (block_t*)isrBuf;
|
||||
fullHead = queueNext(tmp);
|
||||
|
||||
// Set buffer needed and clear overruns.
|
||||
isrBufNeeded = true;
|
||||
isrOver = 0;
|
||||
}
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// timer1 interrupt to clear OCF1B
|
||||
ISR(TIMER1_COMPB_vect) {
|
||||
// Make sure ADC ISR responded to timer event.
|
||||
if (timerFlag) {
|
||||
timerError = true;
|
||||
}
|
||||
timerFlag = true;
|
||||
}
|
||||
//==============================================================================
|
||||
// Error messages stored in flash.
|
||||
#define error(msg) {sd.errorPrint(F(msg));fatalBlink();}
|
||||
//------------------------------------------------------------------------------
|
||||
//
|
||||
void fatalBlink() {
|
||||
while (true) {
|
||||
if (ERROR_LED_PIN >= 0) {
|
||||
digitalWrite(ERROR_LED_PIN, HIGH);
|
||||
delay(200);
|
||||
digitalWrite(ERROR_LED_PIN, LOW);
|
||||
delay(200);
|
||||
}
|
||||
}
|
||||
}
|
||||
//==============================================================================
|
||||
#if ADPS0 != 0 || ADPS1 != 1 || ADPS2 != 2
|
||||
#error unexpected ADC prescaler bits
|
||||
#endif
|
||||
//------------------------------------------------------------------------------
|
||||
// initialize ADC and timer1
|
||||
void adcInit(metadata_t* meta) {
|
||||
uint8_t adps; // prescaler bits for ADCSRA
|
||||
uint32_t ticks = F_CPU*SAMPLE_INTERVAL + 0.5; // Sample interval cpu cycles.
|
||||
|
||||
if (ADC_REF & ~((1 << REFS0) | (1 << REFS1))) {
|
||||
error("Invalid ADC reference");
|
||||
}
|
||||
#ifdef ADC_PRESCALER
|
||||
if (ADC_PRESCALER > 7 || ADC_PRESCALER < 2) {
|
||||
error("Invalid ADC prescaler");
|
||||
}
|
||||
adps = ADC_PRESCALER;
|
||||
#else // ADC_PRESCALER
|
||||
// Allow extra cpu cycles to change ADC settings if more than one pin.
|
||||
int32_t adcCycles = (ticks - ISR_TIMER0)/PIN_COUNT - ISR_SETUP_ADC;
|
||||
|
||||
for (adps = 7; adps > 0; adps--) {
|
||||
if (adcCycles >= (MIN_ADC_CYCLES << adps)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif // ADC_PRESCALER
|
||||
meta->adcFrequency = F_CPU >> adps;
|
||||
if (meta->adcFrequency > (RECORD_EIGHT_BITS ? 2000000 : 1000000)) {
|
||||
error("Sample Rate Too High");
|
||||
}
|
||||
#if ROUND_SAMPLE_INTERVAL
|
||||
// Round so interval is multiple of ADC clock.
|
||||
ticks += 1 << (adps - 1);
|
||||
ticks >>= adps;
|
||||
ticks <<= adps;
|
||||
#endif // ROUND_SAMPLE_INTERVAL
|
||||
|
||||
if (PIN_COUNT > sizeof(meta->pinNumber)/sizeof(meta->pinNumber[0])) {
|
||||
error("Too many pins");
|
||||
}
|
||||
meta->pinCount = PIN_COUNT;
|
||||
meta->recordEightBits = RECORD_EIGHT_BITS;
|
||||
|
||||
for (int i = 0; i < PIN_COUNT; i++) {
|
||||
uint8_t pin = PIN_LIST[i];
|
||||
if (pin >= NUM_ANALOG_INPUTS) {
|
||||
error("Invalid Analog pin number");
|
||||
}
|
||||
meta->pinNumber[i] = pin;
|
||||
|
||||
// Set ADC reference and low three bits of analog pin number.
|
||||
adcmux[i] = (pin & 7) | ADC_REF;
|
||||
if (RECORD_EIGHT_BITS) {
|
||||
adcmux[i] |= 1 << ADLAR;
|
||||
}
|
||||
|
||||
// If this is the first pin, trigger on timer/counter 1 compare match B.
|
||||
adcsrb[i] = i == 0 ? (1 << ADTS2) | (1 << ADTS0) : 0;
|
||||
#ifdef MUX5
|
||||
if (pin > 7) {
|
||||
adcsrb[i] |= (1 << MUX5);
|
||||
}
|
||||
#endif // MUX5
|
||||
adcsra[i] = (1 << ADEN) | (1 << ADIE) | adps;
|
||||
adcsra[i] |= i == 0 ? 1 << ADATE : 1 << ADSC;
|
||||
}
|
||||
|
||||
// Setup timer1
|
||||
TCCR1A = 0;
|
||||
uint8_t tshift;
|
||||
if (ticks < 0X10000) {
|
||||
// no prescale, CTC mode
|
||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10);
|
||||
tshift = 0;
|
||||
} else if (ticks < 0X10000*8) {
|
||||
// prescale 8, CTC mode
|
||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11);
|
||||
tshift = 3;
|
||||
} else if (ticks < 0X10000*64) {
|
||||
// prescale 64, CTC mode
|
||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10);
|
||||
tshift = 6;
|
||||
} else if (ticks < 0X10000*256) {
|
||||
// prescale 256, CTC mode
|
||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12);
|
||||
tshift = 8;
|
||||
} else if (ticks < 0X10000*1024) {
|
||||
// prescale 1024, CTC mode
|
||||
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12) | (1 << CS10);
|
||||
tshift = 10;
|
||||
} else {
|
||||
error("Sample Rate Too Slow");
|
||||
}
|
||||
// divide by prescaler
|
||||
ticks >>= tshift;
|
||||
// set TOP for timer reset
|
||||
ICR1 = ticks - 1;
|
||||
// compare for ADC start
|
||||
OCR1B = 0;
|
||||
|
||||
// multiply by prescaler
|
||||
ticks <<= tshift;
|
||||
|
||||
// Sample interval in CPU clock ticks.
|
||||
meta->sampleInterval = ticks;
|
||||
meta->cpuFrequency = F_CPU;
|
||||
float sampleRate = (float)meta->cpuFrequency/meta->sampleInterval;
|
||||
Serial.print(F("Sample pins:"));
|
||||
for (uint8_t i = 0; i < meta->pinCount; i++) {
|
||||
Serial.print(' ');
|
||||
Serial.print(meta->pinNumber[i], DEC);
|
||||
}
|
||||
Serial.println();
|
||||
Serial.print(F("ADC bits: "));
|
||||
Serial.println(meta->recordEightBits ? 8 : 10);
|
||||
Serial.print(F("ADC clock kHz: "));
|
||||
Serial.println(meta->adcFrequency/1000);
|
||||
Serial.print(F("Sample Rate: "));
|
||||
Serial.println(sampleRate);
|
||||
Serial.print(F("Sample interval usec: "));
|
||||
Serial.println(1000000.0/sampleRate, 4);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// enable ADC and timer1 interrupts
|
||||
void adcStart() {
|
||||
// initialize ISR
|
||||
isrBufNeeded = true;
|
||||
isrOver = 0;
|
||||
adcindex = 1;
|
||||
|
||||
// Clear any pending interrupt.
|
||||
ADCSRA |= 1 << ADIF;
|
||||
|
||||
// Setup for first pin.
|
||||
ADMUX = adcmux[0];
|
||||
ADCSRB = adcsrb[0];
|
||||
ADCSRA = adcsra[0];
|
||||
|
||||
// Enable timer1 interrupts.
|
||||
timerError = false;
|
||||
timerFlag = false;
|
||||
TCNT1 = 0;
|
||||
TIFR1 = 1 << OCF1B;
|
||||
TIMSK1 = 1 << OCIE1B;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
void adcStop() {
|
||||
TIMSK1 = 0;
|
||||
ADCSRA = 0;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// Convert binary file to csv file.
|
||||
void binaryToCsv() {
|
||||
uint8_t lastPct = 0;
|
||||
block_t buf;
|
||||
metadata_t* pm;
|
||||
uint32_t t0 = millis();
|
||||
char csvName[13];
|
||||
StdioStream csvStream;
|
||||
|
||||
if (!binFile.isOpen()) {
|
||||
Serial.println(F("No current binary file"));
|
||||
return;
|
||||
}
|
||||
binFile.rewind();
|
||||
if (binFile.read(&buf , 512) != 512) {
|
||||
error("Read metadata failed");
|
||||
}
|
||||
// Create a new csv file.
|
||||
strcpy(csvName, binName);
|
||||
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv");
|
||||
|
||||
if (!csvStream.fopen(csvName, "w")) {
|
||||
error("open csvStream failed");
|
||||
}
|
||||
Serial.println();
|
||||
Serial.print(F("Writing: "));
|
||||
Serial.print(csvName);
|
||||
Serial.println(F(" - type any character to stop"));
|
||||
pm = (metadata_t*)&buf;
|
||||
csvStream.print(F("Interval,"));
|
||||
float intervalMicros = 1.0e6*pm->sampleInterval/(float)pm->cpuFrequency;
|
||||
csvStream.print(intervalMicros, 4);
|
||||
csvStream.println(F(",usec"));
|
||||
for (uint8_t i = 0; i < pm->pinCount; i++) {
|
||||
if (i) {
|
||||
csvStream.putc(',');
|
||||
}
|
||||
csvStream.print(F("pin"));
|
||||
csvStream.print(pm->pinNumber[i]);
|
||||
}
|
||||
csvStream.println();
|
||||
uint32_t tPct = millis();
|
||||
while (!Serial.available() && binFile.read(&buf, 512) == 512) {
|
||||
if (buf.count == 0) {
|
||||
break;
|
||||
}
|
||||
if (buf.overrun) {
|
||||
csvStream.print(F("OVERRUN,"));
|
||||
csvStream.println(buf.overrun);
|
||||
}
|
||||
for (uint16_t j = 0; j < buf.count; j += PIN_COUNT) {
|
||||
for (uint16_t i = 0; i < PIN_COUNT; i++) {
|
||||
if (i) {
|
||||
csvStream.putc(',');
|
||||
}
|
||||
csvStream.print(buf.data[i + j]);
|
||||
}
|
||||
csvStream.println();
|
||||
}
|
||||
if ((millis() - tPct) > 1000) {
|
||||
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);
|
||||
if (pct != lastPct) {
|
||||
tPct = millis();
|
||||
lastPct = pct;
|
||||
Serial.print(pct, DEC);
|
||||
Serial.println('%');
|
||||
}
|
||||
}
|
||||
if (Serial.available()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
csvStream.fclose();
|
||||
Serial.print(F("Done: "));
|
||||
Serial.print(0.001*(millis() - t0));
|
||||
Serial.println(F(" Seconds"));
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// read data file and check for overruns
|
||||
void checkOverrun() {
|
||||
bool headerPrinted = false;
|
||||
block_t buf;
|
||||
uint32_t bgnBlock, endBlock;
|
||||
uint32_t bn = 0;
|
||||
|
||||
if (!binFile.isOpen()) {
|
||||
Serial.println(F("No current binary file"));
|
||||
return;
|
||||
}
|
||||
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
|
||||
error("contiguousRange failed");
|
||||
}
|
||||
binFile.rewind();
|
||||
Serial.println();
|
||||
Serial.println(F("Checking overrun errors - type any character to stop"));
|
||||
if (binFile.read(&buf , 512) != 512) {
|
||||
error("Read metadata failed");
|
||||
}
|
||||
bn++;
|
||||
while (binFile.read(&buf, 512) == 512) {
|
||||
if (buf.count == 0) {
|
||||
break;
|
||||
}
|
||||
if (buf.overrun) {
|
||||
if (!headerPrinted) {
|
||||
Serial.println();
|
||||
Serial.println(F("Overruns:"));
|
||||
Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount"));
|
||||
headerPrinted = true;
|
||||
}
|
||||
Serial.print(bn);
|
||||
Serial.print(',');
|
||||
Serial.print(bgnBlock + bn);
|
||||
Serial.print(',');
|
||||
Serial.println(buf.overrun);
|
||||
}
|
||||
bn++;
|
||||
}
|
||||
if (!headerPrinted) {
|
||||
Serial.println(F("No errors found"));
|
||||
} else {
|
||||
Serial.println(F("Done"));
|
||||
}
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// dump data file to Serial
|
||||
void dumpData() {
|
||||
block_t buf;
|
||||
if (!binFile.isOpen()) {
|
||||
Serial.println(F("No current binary file"));
|
||||
return;
|
||||
}
|
||||
binFile.rewind();
|
||||
if (binFile.read(&buf , 512) != 512) {
|
||||
error("Read metadata failed");
|
||||
}
|
||||
Serial.println();
|
||||
Serial.println(F("Type any character to stop"));
|
||||
delay(1000);
|
||||
while (!Serial.available() && binFile.read(&buf , 512) == 512) {
|
||||
if (buf.count == 0) {
|
||||
break;
|
||||
}
|
||||
if (buf.overrun) {
|
||||
Serial.print(F("OVERRUN,"));
|
||||
Serial.println(buf.overrun);
|
||||
}
|
||||
for (uint16_t i = 0; i < buf.count; i++) {
|
||||
Serial.print(buf.data[i], DEC);
|
||||
if ((i+1)%PIN_COUNT) {
|
||||
Serial.print(',');
|
||||
} else {
|
||||
Serial.println();
|
||||
}
|
||||
}
|
||||
}
|
||||
Serial.println(F("Done"));
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// log data
|
||||
// max number of blocks to erase per erase call
|
||||
uint32_t const ERASE_SIZE = 262144L;
|
||||
void logData() {
|
||||
uint32_t bgnBlock, endBlock;
|
||||
|
||||
// Allocate extra buffer space.
|
||||
block_t block[BUFFER_BLOCK_COUNT];
|
||||
|
||||
Serial.println();
|
||||
|
||||
// Initialize ADC and timer1.
|
||||
adcInit((metadata_t*) &block[0]);
|
||||
|
||||
// Find unused file name.
|
||||
if (BASE_NAME_SIZE > 6) {
|
||||
error("FILE_BASE_NAME too long");
|
||||
}
|
||||
while (sd.exists(binName)) {
|
||||
if (binName[BASE_NAME_SIZE + 1] != '9') {
|
||||
binName[BASE_NAME_SIZE + 1]++;
|
||||
} else {
|
||||
binName[BASE_NAME_SIZE + 1] = '0';
|
||||
if (binName[BASE_NAME_SIZE] == '9') {
|
||||
error("Can't create file name");
|
||||
}
|
||||
binName[BASE_NAME_SIZE]++;
|
||||
}
|
||||
}
|
||||
// Delete old tmp file.
|
||||
if (sd.exists(TMP_FILE_NAME)) {
|
||||
Serial.println(F("Deleting tmp file"));
|
||||
if (!sd.remove(TMP_FILE_NAME)) {
|
||||
error("Can't remove tmp file");
|
||||
}
|
||||
}
|
||||
// Create new file.
|
||||
Serial.println(F("Creating new file"));
|
||||
binFile.close();
|
||||
if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) {
|
||||
error("createContiguous failed");
|
||||
}
|
||||
// Get the address of the file on the SD.
|
||||
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
|
||||
error("contiguousRange failed");
|
||||
}
|
||||
// Use SdFat's internal buffer.
|
||||
uint8_t* cache = (uint8_t*)sd.vol()->cacheClear();
|
||||
if (cache == 0) {
|
||||
error("cacheClear failed");
|
||||
}
|
||||
|
||||
// Flash erase all data in the file.
|
||||
Serial.println(F("Erasing all data"));
|
||||
uint32_t bgnErase = bgnBlock;
|
||||
uint32_t endErase;
|
||||
while (bgnErase < endBlock) {
|
||||
endErase = bgnErase + ERASE_SIZE;
|
||||
if (endErase > endBlock) {
|
||||
endErase = endBlock;
|
||||
}
|
||||
if (!sd.card()->erase(bgnErase, endErase)) {
|
||||
error("erase failed");
|
||||
}
|
||||
bgnErase = endErase + 1;
|
||||
}
|
||||
// Start a multiple block write.
|
||||
if (!sd.card()->writeStart(bgnBlock)) {
|
||||
error("writeBegin failed");
|
||||
}
|
||||
// Write metadata.
|
||||
if (!sd.card()->writeData((uint8_t*)&block[0])) {
|
||||
error("Write metadata failed");
|
||||
}
|
||||
// Initialize queues.
|
||||
emptyHead = emptyTail = 0;
|
||||
fullHead = fullTail = 0;
|
||||
|
||||
// Use SdFat buffer for one block.
|
||||
emptyQueue[emptyHead] = (block_t*)cache;
|
||||
emptyHead = queueNext(emptyHead);
|
||||
|
||||
// Put rest of buffers in the empty queue.
|
||||
for (uint8_t i = 0; i < BUFFER_BLOCK_COUNT; i++) {
|
||||
emptyQueue[emptyHead] = &block[i];
|
||||
emptyHead = queueNext(emptyHead);
|
||||
}
|
||||
// Give SD time to prepare for big write.
|
||||
delay(1000);
|
||||
Serial.println(F("Logging - type any character to stop"));
|
||||
// Wait for Serial Idle.
|
||||
Serial.flush();
|
||||
delay(10);
|
||||
uint32_t bn = 1;
|
||||
uint32_t t0 = millis();
|
||||
uint32_t t1 = t0;
|
||||
uint32_t overruns = 0;
|
||||
uint32_t count = 0;
|
||||
uint32_t maxLatency = 0;
|
||||
|
||||
// Start logging interrupts.
|
||||
adcStart();
|
||||
while (1) {
|
||||
if (fullHead != fullTail) {
|
||||
// Get address of block to write.
|
||||
block_t* pBlock = fullQueue[fullTail];
|
||||
|
||||
// Write block to SD.
|
||||
uint32_t usec = micros();
|
||||
if (!sd.card()->writeData((uint8_t*)pBlock)) {
|
||||
error("write data failed");
|
||||
}
|
||||
usec = micros() - usec;
|
||||
t1 = millis();
|
||||
if (usec > maxLatency) {
|
||||
maxLatency = usec;
|
||||
}
|
||||
count += pBlock->count;
|
||||
|
||||
// Add overruns and possibly light LED.
|
||||
if (pBlock->overrun) {
|
||||
overruns += pBlock->overrun;
|
||||
if (ERROR_LED_PIN >= 0) {
|
||||
digitalWrite(ERROR_LED_PIN, HIGH);
|
||||
}
|
||||
}
|
||||
// Move block to empty queue.
|
||||
emptyQueue[emptyHead] = pBlock;
|
||||
emptyHead = queueNext(emptyHead);
|
||||
fullTail = queueNext(fullTail);
|
||||
bn++;
|
||||
if (bn == FILE_BLOCK_COUNT) {
|
||||
// File full so stop ISR calls.
|
||||
adcStop();
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (timerError) {
|
||||
error("Missed timer event - rate too high");
|
||||
}
|
||||
if (Serial.available()) {
|
||||
// Stop ISR calls.
|
||||
adcStop();
|
||||
if (isrBuf != 0 && isrBuf->count >= PIN_COUNT) {
|
||||
// Truncate to last complete sample.
|
||||
isrBuf->count = PIN_COUNT*(isrBuf->count/PIN_COUNT);
|
||||
// Put buffer in full queue.
|
||||
fullQueue[fullHead] = isrBuf;
|
||||
fullHead = queueNext(fullHead);
|
||||
isrBuf = 0;
|
||||
}
|
||||
if (fullHead == fullTail) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!sd.card()->writeStop()) {
|
||||
error("writeStop failed");
|
||||
}
|
||||
// Truncate file if recording stopped early.
|
||||
if (bn != FILE_BLOCK_COUNT) {
|
||||
Serial.println(F("Truncating file"));
|
||||
if (!binFile.truncate(512L * bn)) {
|
||||
error("Can't truncate file");
|
||||
}
|
||||
}
|
||||
if (!binFile.rename(binName)) {
|
||||
error("Can't rename file");
|
||||
}
|
||||
Serial.print(F("File renamed: "));
|
||||
Serial.println(binName);
|
||||
Serial.print(F("Max block write usec: "));
|
||||
Serial.println(maxLatency);
|
||||
Serial.print(F("Record time sec: "));
|
||||
Serial.println(0.001*(t1 - t0), 3);
|
||||
Serial.print(F("Sample count: "));
|
||||
Serial.println(count/PIN_COUNT);
|
||||
Serial.print(F("Samples/sec: "));
|
||||
Serial.println((1000.0/PIN_COUNT)*count/(t1-t0));
|
||||
Serial.print(F("Overruns: "));
|
||||
Serial.println(overruns);
|
||||
Serial.println(F("Done"));
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
void setup(void) {
|
||||
if (ERROR_LED_PIN >= 0) {
|
||||
pinMode(ERROR_LED_PIN, OUTPUT);
|
||||
}
|
||||
Serial.begin(9600);
|
||||
|
||||
// Read the first sample pin to init the ADC.
|
||||
analogRead(PIN_LIST[0]);
|
||||
|
||||
Serial.print(F("FreeStack: "));
|
||||
Serial.println(FreeStack());
|
||||
|
||||
// Initialize at the highest speed supported by the board that is
|
||||
// not over 50 MHz. Try a lower speed if SPI errors occur.
|
||||
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {
|
||||
sd.initErrorPrint();
|
||||
fatalBlink();
|
||||
}
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
void loop(void) {
|
||||
// Read any Serial data.
|
||||
do {
|
||||
delay(10);
|
||||
} while (Serial.available() && Serial.read() >= 0);
|
||||
Serial.println();
|
||||
Serial.println(F("type:"));
|
||||
Serial.println(F("c - convert file to csv"));
|
||||
Serial.println(F("d - dump data to Serial"));
|
||||
Serial.println(F("e - overrun error details"));
|
||||
Serial.println(F("r - record ADC data"));
|
||||
|
||||
while(!Serial.available()) {
|
||||
yield();
|
||||
}
|
||||
char c = tolower(Serial.read());
|
||||
if (ERROR_LED_PIN >= 0) {
|
||||
digitalWrite(ERROR_LED_PIN, LOW);
|
||||
}
|
||||
// Read any Serial data.
|
||||
do {
|
||||
delay(10);
|
||||
} while (Serial.available() && Serial.read() >= 0);
|
||||
|
||||
if (c == 'c') {
|
||||
binaryToCsv();
|
||||
} else if (c == 'd') {
|
||||
dumpData();
|
||||
} else if (c == 'e') {
|
||||
checkOverrun();
|
||||
} else if (c == 'r') {
|
||||
logData();
|
||||
} else {
|
||||
Serial.println(F("Invalid entry"));
|
||||
}
|
||||
}
|
||||
#else // __AVR__
|
||||
#error This program is only for AVR.
|
||||
#endif // __AVR__
|
||||
Reference in New Issue
Block a user