First Commit

This commit is contained in:
MindCreeper03
2025-02-27 19:31:50 +01:00
parent bcbb6aff9a
commit e490df1715
2470 changed files with 1479965 additions and 0 deletions

View File

@@ -0,0 +1,134 @@
#include "RTClib.h"
#define DS1307_ADDRESS 0x68 ///< I2C address for DS1307
#define DS1307_CONTROL 0x07 ///< Control register
#define DS1307_NVRAM 0x08 ///< Start of RAM registers - 56 bytes, 0x08 to 0x3f
/**************************************************************************/
/*!
@brief Start I2C for the DS1307 and test succesful connection
@param wireInstance pointer to the I2C bus
@return True if Wire can find DS1307 or false otherwise.
*/
/**************************************************************************/
bool RTC_DS1307::begin(TwoWire *wireInstance) {
if (i2c_dev)
delete i2c_dev;
i2c_dev = new Adafruit_I2CDevice(DS1307_ADDRESS, wireInstance);
if (!i2c_dev->begin())
return false;
return true;
}
/**************************************************************************/
/*!
@brief Is the DS1307 running? Check the Clock Halt bit in register 0
@return 1 if the RTC is running, 0 if not
*/
/**************************************************************************/
uint8_t RTC_DS1307::isrunning(void) { return !(read_register(0) >> 7); }
/**************************************************************************/
/*!
@brief Set the date and time in the DS1307
@param dt DateTime object containing the desired date/time
*/
/**************************************************************************/
void RTC_DS1307::adjust(const DateTime &dt) {
uint8_t buffer[8] = {0,
bin2bcd(dt.second()),
bin2bcd(dt.minute()),
bin2bcd(dt.hour()),
0,
bin2bcd(dt.day()),
bin2bcd(dt.month()),
bin2bcd(dt.year() - 2000U)};
i2c_dev->write(buffer, 8);
}
/**************************************************************************/
/*!
@brief Get the current date and time from the DS1307
@return DateTime object containing the current date and time
*/
/**************************************************************************/
DateTime RTC_DS1307::now() {
uint8_t buffer[7];
buffer[0] = 0;
i2c_dev->write_then_read(buffer, 1, buffer, 7);
return DateTime(bcd2bin(buffer[6]) + 2000U, bcd2bin(buffer[5]),
bcd2bin(buffer[4]), bcd2bin(buffer[2]), bcd2bin(buffer[1]),
bcd2bin(buffer[0] & 0x7F));
}
/**************************************************************************/
/*!
@brief Read the current mode of the SQW pin
@return Mode as Ds1307SqwPinMode enum
*/
/**************************************************************************/
Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() {
return static_cast<Ds1307SqwPinMode>(read_register(DS1307_CONTROL) & 0x93);
}
/**************************************************************************/
/*!
@brief Change the SQW pin mode
@param mode The mode to use
*/
/**************************************************************************/
void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) {
write_register(DS1307_CONTROL, mode);
}
/**************************************************************************/
/*!
@brief Read data from the DS1307's NVRAM
@param buf Pointer to a buffer to store the data - make sure it's large
enough to hold size bytes
@param size Number of bytes to read
@param address Starting NVRAM address, from 0 to 55
*/
/**************************************************************************/
void RTC_DS1307::readnvram(uint8_t *buf, uint8_t size, uint8_t address) {
uint8_t addrByte = DS1307_NVRAM + address;
i2c_dev->write_then_read(&addrByte, 1, buf, size);
}
/**************************************************************************/
/*!
@brief Write data to the DS1307 NVRAM
@param address Starting NVRAM address, from 0 to 55
@param buf Pointer to buffer containing the data to write
@param size Number of bytes in buf to write to NVRAM
*/
/**************************************************************************/
void RTC_DS1307::writenvram(uint8_t address, const uint8_t *buf, uint8_t size) {
uint8_t addrByte = DS1307_NVRAM + address;
i2c_dev->write(buf, size, true, &addrByte, 1);
}
/**************************************************************************/
/*!
@brief Shortcut to read one byte from NVRAM
@param address NVRAM address, 0 to 55
@return The byte read from NVRAM
*/
/**************************************************************************/
uint8_t RTC_DS1307::readnvram(uint8_t address) {
uint8_t data;
readnvram(&data, 1, address);
return data;
}
/**************************************************************************/
/*!
@brief Shortcut to write one byte to NVRAM
@param address NVRAM address, 0 to 55
@param data One byte to write
*/
/**************************************************************************/
void RTC_DS1307::writenvram(uint8_t address, uint8_t data) {
writenvram(address, &data, 1);
}

View File

@@ -0,0 +1,384 @@
#include "RTClib.h"
#define DS3231_ADDRESS 0x68 ///< I2C address for DS3231
#define DS3231_TIME 0x00 ///< Time register
#define DS3231_ALARM1 0x07 ///< Alarm 1 register
#define DS3231_ALARM2 0x0B ///< Alarm 2 register
#define DS3231_CONTROL 0x0E ///< Control register
#define DS3231_STATUSREG 0x0F ///< Status register
#define DS3231_TEMPERATUREREG \
0x11 ///< Temperature register (high byte - low byte is at 0x12), 10-bit
///< temperature value
/**************************************************************************/
/*!
@brief Start I2C for the DS3231 and test succesful connection
@param wireInstance pointer to the I2C bus
@return True if Wire can find DS3231 or false otherwise.
*/
/**************************************************************************/
bool RTC_DS3231::begin(TwoWire *wireInstance) {
if (i2c_dev)
delete i2c_dev;
i2c_dev = new Adafruit_I2CDevice(DS3231_ADDRESS, wireInstance);
if (!i2c_dev->begin())
return false;
return true;
}
/**************************************************************************/
/*!
@brief Check the status register Oscillator Stop Flag to see if the DS3231
stopped due to power loss
@return True if the bit is set (oscillator stopped) or false if it is
running
*/
/**************************************************************************/
bool RTC_DS3231::lostPower(void) {
return read_register(DS3231_STATUSREG) >> 7;
}
/**************************************************************************/
/*!
@brief Set the date and flip the Oscillator Stop Flag
@param dt DateTime object containing the date/time to set
*/
/**************************************************************************/
void RTC_DS3231::adjust(const DateTime &dt) {
uint8_t buffer[8] = {DS3231_TIME,
bin2bcd(dt.second()),
bin2bcd(dt.minute()),
bin2bcd(dt.hour()),
bin2bcd(dowToDS3231(dt.dayOfTheWeek())),
bin2bcd(dt.day()),
bin2bcd(dt.month()),
bin2bcd(dt.year() - 2000U)};
i2c_dev->write(buffer, 8);
uint8_t statreg = read_register(DS3231_STATUSREG);
statreg &= ~0x80; // flip OSF bit
write_register(DS3231_STATUSREG, statreg);
}
/**************************************************************************/
/*!
@brief Get the current date/time
@return DateTime object with the current date/time
*/
/**************************************************************************/
DateTime RTC_DS3231::now() {
uint8_t buffer[7];
buffer[0] = 0;
i2c_dev->write_then_read(buffer, 1, buffer, 7);
return DateTime(bcd2bin(buffer[6]) + 2000U, bcd2bin(buffer[5] & 0x7F),
bcd2bin(buffer[4]), bcd2bin(buffer[2]), bcd2bin(buffer[1]),
bcd2bin(buffer[0] & 0x7F));
}
/**************************************************************************/
/*!
@brief Read the SQW pin mode
@return Pin mode, see Ds3231SqwPinMode enum
*/
/**************************************************************************/
Ds3231SqwPinMode RTC_DS3231::readSqwPinMode() {
int mode;
mode = read_register(DS3231_CONTROL) & 0x1C;
if (mode & 0x04)
mode = DS3231_OFF;
return static_cast<Ds3231SqwPinMode>(mode);
}
/**************************************************************************/
/*!
@brief Set the SQW pin mode
@param mode Desired mode, see Ds3231SqwPinMode enum
*/
/**************************************************************************/
void RTC_DS3231::writeSqwPinMode(Ds3231SqwPinMode mode) {
uint8_t ctrl = read_register(DS3231_CONTROL);
ctrl &= ~0x04; // turn off INTCON
ctrl &= ~0x18; // set freq bits to 0
write_register(DS3231_CONTROL, ctrl | mode);
}
/**************************************************************************/
/*!
@brief Get the current temperature from the DS3231's temperature sensor
@return Current temperature (float)
*/
/**************************************************************************/
float RTC_DS3231::getTemperature() {
uint8_t buffer[2] = {DS3231_TEMPERATUREREG, 0};
i2c_dev->write_then_read(buffer, 1, buffer, 2);
return (float)buffer[0] + (buffer[1] >> 6) * 0.25f;
}
/**************************************************************************/
/*!
@brief Set alarm 1 for DS3231
@param dt DateTime object
@param alarm_mode Desired mode, see Ds3231Alarm1Mode enum
@return False if control register is not set, otherwise true
*/
/**************************************************************************/
bool RTC_DS3231::setAlarm1(const DateTime &dt, Ds3231Alarm1Mode alarm_mode) {
uint8_t ctrl = read_register(DS3231_CONTROL);
if (!(ctrl & 0x04)) {
return false;
}
uint8_t A1M1 = (alarm_mode & 0x01) << 7; // Seconds bit 7.
uint8_t A1M2 = (alarm_mode & 0x02) << 6; // Minutes bit 7.
uint8_t A1M3 = (alarm_mode & 0x04) << 5; // Hour bit 7.
uint8_t A1M4 = (alarm_mode & 0x08) << 4; // Day/Date bit 7.
uint8_t DY_DT = (alarm_mode & 0x10)
<< 2; // Day/Date bit 6. Date when 0, day of week when 1.
uint8_t day = (DY_DT) ? dowToDS3231(dt.dayOfTheWeek()) : dt.day();
uint8_t buffer[5] = {DS3231_ALARM1, uint8_t(bin2bcd(dt.second()) | A1M1),
uint8_t(bin2bcd(dt.minute()) | A1M2),
uint8_t(bin2bcd(dt.hour()) | A1M3),
uint8_t(bin2bcd(day) | A1M4 | DY_DT)};
i2c_dev->write(buffer, 5);
write_register(DS3231_CONTROL, ctrl | 0x01); // AI1E
return true;
}
/**************************************************************************/
/*!
@brief Set alarm 2 for DS3231
@param dt DateTime object
@param alarm_mode Desired mode, see Ds3231Alarm2Mode enum
@return False if control register is not set, otherwise true
*/
/**************************************************************************/
bool RTC_DS3231::setAlarm2(const DateTime &dt, Ds3231Alarm2Mode alarm_mode) {
uint8_t ctrl = read_register(DS3231_CONTROL);
if (!(ctrl & 0x04)) {
return false;
}
uint8_t A2M2 = (alarm_mode & 0x01) << 7; // Minutes bit 7.
uint8_t A2M3 = (alarm_mode & 0x02) << 6; // Hour bit 7.
uint8_t A2M4 = (alarm_mode & 0x04) << 5; // Day/Date bit 7.
uint8_t DY_DT = (alarm_mode & 0x08)
<< 3; // Day/Date bit 6. Date when 0, day of week when 1.
uint8_t day = (DY_DT) ? dowToDS3231(dt.dayOfTheWeek()) : dt.day();
uint8_t buffer[4] = {DS3231_ALARM2, uint8_t(bin2bcd(dt.minute()) | A2M2),
uint8_t(bin2bcd(dt.hour()) | A2M3),
uint8_t(bin2bcd(day) | A2M4 | DY_DT)};
i2c_dev->write(buffer, 4);
write_register(DS3231_CONTROL, ctrl | 0x02); // AI2E
return true;
}
/**************************************************************************/
/*!
@brief Get the date/time value of Alarm1
@return DateTime object with the Alarm1 data set in the
day, hour, minutes, and seconds fields
*/
/**************************************************************************/
DateTime RTC_DS3231::getAlarm1() {
uint8_t buffer[5] = {DS3231_ALARM1, 0, 0, 0, 0};
i2c_dev->write_then_read(buffer, 1, buffer, 5);
uint8_t seconds = bcd2bin(buffer[0] & 0x7F);
uint8_t minutes = bcd2bin(buffer[1] & 0x7F);
// Fetching the hour assumes 24 hour time (never 12)
// because this library exclusively stores the time
// in 24 hour format. Note that the DS3231 supports
// 12 hour storage, and sets bits to indicate the type
// that is stored.
uint8_t hour = bcd2bin(buffer[2] & 0x3F);
// Determine if the alarm is set to fire based on the
// day of the week, or an explicit date match.
bool isDayOfWeek = (buffer[3] & 0x40) >> 6;
uint8_t day;
if (isDayOfWeek) {
// Alarm set to match on day of the week
day = bcd2bin(buffer[3] & 0x0F);
} else {
// Alarm set to match on day of the month
day = bcd2bin(buffer[3] & 0x3F);
}
// On the first week of May 2000, the day-of-the-week number
// matches the date number.
return DateTime(2000, 5, day, hour, minutes, seconds);
}
/**************************************************************************/
/*!
@brief Get the date/time value of Alarm2
@return DateTime object with the Alarm2 data set in the
day, hour, and minutes fields
*/
/**************************************************************************/
DateTime RTC_DS3231::getAlarm2() {
uint8_t buffer[4] = {DS3231_ALARM2, 0, 0, 0};
i2c_dev->write_then_read(buffer, 1, buffer, 4);
uint8_t minutes = bcd2bin(buffer[0] & 0x7F);
// Fetching the hour assumes 24 hour time (never 12)
// because this library exclusively stores the time
// in 24 hour format. Note that the DS3231 supports
// 12 hour storage, and sets bits to indicate the type
// that is stored.
uint8_t hour = bcd2bin(buffer[1] & 0x3F);
// Determine if the alarm is set to fire based on the
// day of the week, or an explicit date match.
bool isDayOfWeek = (buffer[2] & 0x40) >> 6;
uint8_t day;
if (isDayOfWeek) {
// Alarm set to match on day of the week
day = bcd2bin(buffer[2] & 0x0F);
} else {
// Alarm set to match on day of the month
day = bcd2bin(buffer[2] & 0x3F);
}
// On the first week of May 2000, the day-of-the-week number
// matches the date number.
return DateTime(2000, 5, day, hour, minutes, 0);
}
/**************************************************************************/
/*!
@brief Get the mode for Alarm1
@return Ds3231Alarm1Mode enum value for the current Alarm1 mode
*/
/**************************************************************************/
Ds3231Alarm1Mode RTC_DS3231::getAlarm1Mode() {
uint8_t buffer[5] = {DS3231_ALARM1, 0, 0, 0, 0};
i2c_dev->write_then_read(buffer, 1, buffer, 5);
uint8_t alarm_mode = (buffer[0] & 0x80) >> 7 // A1M1 - Seconds bit
| (buffer[1] & 0x80) >> 6 // A1M2 - Minutes bit
| (buffer[2] & 0x80) >> 5 // A1M3 - Hour bit
| (buffer[3] & 0x80) >> 4 // A1M4 - Day/Date bit
| (buffer[3] & 0x40) >> 2; // DY_DT
// Determine which mode the fetched alarm bits map to
switch (alarm_mode) {
case DS3231_A1_PerSecond:
case DS3231_A1_Second:
case DS3231_A1_Minute:
case DS3231_A1_Hour:
case DS3231_A1_Date:
case DS3231_A1_Day:
return (Ds3231Alarm1Mode)alarm_mode;
default:
// Default if the alarm mode cannot be read
return DS3231_A1_Date;
}
}
/**************************************************************************/
/*!
@brief Get the mode for Alarm2
@return Ds3231Alarm2Mode enum value for the current Alarm2 mode
*/
/**************************************************************************/
Ds3231Alarm2Mode RTC_DS3231::getAlarm2Mode() {
uint8_t buffer[4] = {DS3231_ALARM2, 0, 0, 0};
i2c_dev->write_then_read(buffer, 1, buffer, 4);
uint8_t alarm_mode = (buffer[0] & 0x80) >> 7 // A2M2 - Minutes bit
| (buffer[1] & 0x80) >> 6 // A2M3 - Hour bit
| (buffer[2] & 0x80) >> 5 // A2M4 - Day/Date bit
| (buffer[2] & 0x40) >> 3; // DY_DT
// Determine which mode the fetched alarm bits map to
switch (alarm_mode) {
case DS3231_A2_PerMinute:
case DS3231_A2_Minute:
case DS3231_A2_Hour:
case DS3231_A2_Date:
case DS3231_A2_Day:
return (Ds3231Alarm2Mode)alarm_mode;
default:
// Default if the alarm mode cannot be read
return DS3231_A2_Date;
}
}
/**************************************************************************/
/*!
@brief Disable alarm
@param alarm_num Alarm number to disable
*/
/**************************************************************************/
void RTC_DS3231::disableAlarm(uint8_t alarm_num) {
uint8_t ctrl = read_register(DS3231_CONTROL);
ctrl &= ~(1 << (alarm_num - 1));
write_register(DS3231_CONTROL, ctrl);
}
/**************************************************************************/
/*!
@brief Clear status of alarm
@param alarm_num Alarm number to clear
*/
/**************************************************************************/
void RTC_DS3231::clearAlarm(uint8_t alarm_num) {
uint8_t status = read_register(DS3231_STATUSREG);
status &= ~(0x1 << (alarm_num - 1));
write_register(DS3231_STATUSREG, status);
}
/**************************************************************************/
/*!
@brief Get status of alarm
@param alarm_num Alarm number to check status of
@return True if alarm has been fired otherwise false
*/
/**************************************************************************/
bool RTC_DS3231::alarmFired(uint8_t alarm_num) {
return (read_register(DS3231_STATUSREG) >> (alarm_num - 1)) & 0x1;
}
/**************************************************************************/
/*!
@brief Enable 32KHz Output
@details The 32kHz output is enabled by default. It requires an external
pull-up resistor to function correctly
*/
/**************************************************************************/
void RTC_DS3231::enable32K(void) {
uint8_t status = read_register(DS3231_STATUSREG);
status |= (0x1 << 0x03);
write_register(DS3231_STATUSREG, status);
}
/**************************************************************************/
/*!
@brief Disable 32KHz Output
*/
/**************************************************************************/
void RTC_DS3231::disable32K(void) {
uint8_t status = read_register(DS3231_STATUSREG);
status &= ~(0x1 << 0x03);
write_register(DS3231_STATUSREG, status);
}
/**************************************************************************/
/*!
@brief Get status of 32KHz Output
@return True if enabled otherwise false
*/
/**************************************************************************/
bool RTC_DS3231::isEnabled32K(void) {
return (read_register(DS3231_STATUSREG) >> 0x03) & 0x01;
}

View File

@@ -0,0 +1,33 @@
#include "RTClib.h"
/**************************************************************************/
/*!
@brief Set the current date/time of the RTC_Micros clock.
@param dt DateTime object with the desired date and time
*/
/**************************************************************************/
void RTC_Micros::adjust(const DateTime &dt) {
lastMicros = micros();
lastUnix = dt.unixtime();
}
/**************************************************************************/
/*!
@brief Adjust the RTC_Micros clock to compensate for system clock drift
@param ppm Adjustment to make. A positive adjustment makes the clock faster.
*/
/**************************************************************************/
void RTC_Micros::adjustDrift(int ppm) { microsPerSecond = 1000000 - ppm; }
/**************************************************************************/
/*!
@brief Get the current date/time from the RTC_Micros clock.
@return DateTime object containing the current date/time
*/
/**************************************************************************/
DateTime RTC_Micros::now() {
uint32_t elapsedSeconds = (micros() - lastMicros) / microsPerSecond;
lastMicros += elapsedSeconds * microsPerSecond;
lastUnix += elapsedSeconds;
return lastUnix;
}

View File

@@ -0,0 +1,27 @@
#include "RTClib.h"
/**************************************************************************/
/*!
@brief Set the current date/time of the RTC_Millis clock.
@param dt DateTime object with the desired date and time
*/
/**************************************************************************/
void RTC_Millis::adjust(const DateTime &dt) {
lastMillis = millis();
lastUnix = dt.unixtime();
}
/**************************************************************************/
/*!
@brief Return a DateTime object containing the current date/time.
Note that computing (millis() - lastMillis) is rollover-safe as long
as this method is called at least once every 49.7 days.
@return DateTime object containing current time
*/
/**************************************************************************/
DateTime RTC_Millis::now() {
uint32_t elapsedSeconds = (millis() - lastMillis) / 1000;
lastMillis += elapsedSeconds * 1000;
lastUnix += elapsedSeconds;
return lastUnix;
}

View File

@@ -0,0 +1,292 @@
#include "RTClib.h"
#define PCF8523_ADDRESS 0x68 ///< I2C address for PCF8523
#define PCF8523_CLKOUTCONTROL 0x0F ///< Timer and CLKOUT control register
#define PCF8523_CONTROL_1 0x00 ///< Control and status register 1
#define PCF8523_CONTROL_2 0x01 ///< Control and status register 2
#define PCF8523_CONTROL_3 0x02 ///< Control and status register 3
#define PCF8523_TIMER_B_FRCTL 0x12 ///< Timer B source clock frequency control
#define PCF8523_TIMER_B_VALUE 0x13 ///< Timer B value (number clock periods)
#define PCF8523_OFFSET 0x0E ///< Offset register
#define PCF8523_STATUSREG 0x03 ///< Status register
/**************************************************************************/
/*!
@brief Start I2C for the PCF8523 and test succesful connection
@param wireInstance pointer to the I2C bus
@return True if Wire can find PCF8523 or false otherwise.
*/
/**************************************************************************/
bool RTC_PCF8523::begin(TwoWire *wireInstance) {
if (i2c_dev)
delete i2c_dev;
i2c_dev = new Adafruit_I2CDevice(PCF8523_ADDRESS, wireInstance);
if (!i2c_dev->begin())
return false;
return true;
}
/**************************************************************************/
/*!
@brief Check the status register Oscillator Stop flag to see if the PCF8523
stopped due to power loss
@details When battery or external power is first applied, the PCF8523's
crystal oscillator takes up to 2s to stabilize. During this time adjust()
cannot clear the 'OS' flag. See datasheet OS flag section for details.
@return True if the bit is set (oscillator is or has stopped) and false only
after the bit is cleared, for instance with adjust()
*/
/**************************************************************************/
bool RTC_PCF8523::lostPower(void) {
return read_register(PCF8523_STATUSREG) >> 7;
}
/**************************************************************************/
/*!
@brief Check control register 3 to see if we've run adjust() yet (setting
the date/time and battery switchover mode)
@return True if the PCF8523 has been set up, false if not
*/
/**************************************************************************/
bool RTC_PCF8523::initialized(void) {
return (read_register(PCF8523_CONTROL_3) & 0xE0) != 0xE0;
}
/**************************************************************************/
/*!
@brief Set the date and time, set battery switchover mode
@param dt DateTime to set
*/
/**************************************************************************/
void RTC_PCF8523::adjust(const DateTime &dt) {
uint8_t buffer[8] = {3, // start at location 3
bin2bcd(dt.second()),
bin2bcd(dt.minute()),
bin2bcd(dt.hour()),
bin2bcd(dt.day()),
bin2bcd(0), // skip weekdays
bin2bcd(dt.month()),
bin2bcd(dt.year() - 2000U)};
i2c_dev->write(buffer, 8);
// set to battery switchover mode
write_register(PCF8523_CONTROL_3, 0x00);
}
/**************************************************************************/
/*!
@brief Get the current date/time
@return DateTime object containing the current date/time
*/
/**************************************************************************/
DateTime RTC_PCF8523::now() {
uint8_t buffer[7];
buffer[0] = 3;
i2c_dev->write_then_read(buffer, 1, buffer, 7);
return DateTime(bcd2bin(buffer[6]) + 2000U, bcd2bin(buffer[5]),
bcd2bin(buffer[3]), bcd2bin(buffer[2]), bcd2bin(buffer[1]),
bcd2bin(buffer[0] & 0x7F));
}
/**************************************************************************/
/*!
@brief Resets the STOP bit in register Control_1
*/
/**************************************************************************/
void RTC_PCF8523::start(void) {
uint8_t ctlreg = read_register(PCF8523_CONTROL_1);
if (ctlreg & (1 << 5))
write_register(PCF8523_CONTROL_1, ctlreg & ~(1 << 5));
}
/**************************************************************************/
/*!
@brief Sets the STOP bit in register Control_1
*/
/**************************************************************************/
void RTC_PCF8523::stop(void) {
write_register(PCF8523_CONTROL_1,
read_register(PCF8523_CONTROL_1) | (1 << 5));
}
/**************************************************************************/
/*!
@brief Is the PCF8523 running? Check the STOP bit in register Control_1
@return 1 if the RTC is running, 0 if not
*/
/**************************************************************************/
uint8_t RTC_PCF8523::isrunning() {
return !((read_register(PCF8523_CONTROL_1) >> 5) & 1);
}
/**************************************************************************/
/*!
@brief Read the mode of the INT/SQW pin on the PCF8523
@return SQW pin mode as a #Pcf8523SqwPinMode enum
*/
/**************************************************************************/
Pcf8523SqwPinMode RTC_PCF8523::readSqwPinMode() {
int mode = read_register(PCF8523_CLKOUTCONTROL);
mode >>= 3;
mode &= 0x7;
return static_cast<Pcf8523SqwPinMode>(mode);
}
/**************************************************************************/
/*!
@brief Set the INT/SQW pin mode on the PCF8523
@param mode The mode to set, see the #Pcf8523SqwPinMode enum for options
*/
/**************************************************************************/
void RTC_PCF8523::writeSqwPinMode(Pcf8523SqwPinMode mode) {
write_register(PCF8523_CLKOUTCONTROL, mode << 3);
}
/**************************************************************************/
/*!
@brief Enable the Second Timer (1Hz) Interrupt on the PCF8523.
@details The INT/SQW pin will pull low for a brief pulse once per second.
*/
/**************************************************************************/
void RTC_PCF8523::enableSecondTimer() {
uint8_t ctlreg = read_register(PCF8523_CONTROL_1);
uint8_t clkreg = read_register(PCF8523_CLKOUTCONTROL);
// TAM pulse int. mode (shared with Timer A), CLKOUT (aka SQW) disabled
write_register(PCF8523_CLKOUTCONTROL, clkreg | 0xB8);
// SIE Second timer int. enable
write_register(PCF8523_CONTROL_1, ctlreg | (1 << 2));
}
/**************************************************************************/
/*!
@brief Disable the Second Timer (1Hz) Interrupt on the PCF8523.
*/
/**************************************************************************/
void RTC_PCF8523::disableSecondTimer() {
write_register(PCF8523_CONTROL_1,
read_register(PCF8523_CONTROL_1) & ~(1 << 2));
}
/**************************************************************************/
/*!
@brief Enable the Countdown Timer Interrupt on the PCF8523.
@details The INT/SQW pin will be pulled low at the end of a specified
countdown period ranging from 244 microseconds to 10.625 days.
Uses PCF8523 Timer B. Any existing CLKOUT square wave, configured with
writeSqwPinMode(), will halt. The interrupt low pulse width is adjustable
from 3/64ths (default) to 14/64ths of a second.
@param clkFreq One of the PCF8523's Timer Source Clock Frequencies.
See the #PCF8523TimerClockFreq enum for options and associated time ranges.
@param numPeriods The number of clkFreq periods (1-255) to count down.
@param lowPulseWidth Optional: the length of time for the interrupt pin
low pulse. See the #PCF8523TimerIntPulse enum for options.
*/
/**************************************************************************/
void RTC_PCF8523::enableCountdownTimer(PCF8523TimerClockFreq clkFreq,
uint8_t numPeriods,
uint8_t lowPulseWidth) {
// Datasheet cautions against updating countdown value while it's running,
// so disabling allows repeated calls with new values to set new countdowns
disableCountdownTimer();
// Leave compatible settings intact
uint8_t ctlreg = read_register(PCF8523_CONTROL_2);
uint8_t clkreg = read_register(PCF8523_CLKOUTCONTROL);
// CTBIE Countdown Timer B Interrupt Enabled
write_register(PCF8523_CONTROL_2, ctlreg |= 0x01);
// Timer B source clock frequency, optionally int. low pulse width
write_register(PCF8523_TIMER_B_FRCTL, lowPulseWidth << 4 | clkFreq);
// Timer B value (number of source clock periods)
write_register(PCF8523_TIMER_B_VALUE, numPeriods);
// TBM Timer B pulse int. mode, CLKOUT (aka SQW) disabled, TBC start Timer B
write_register(PCF8523_CLKOUTCONTROL, clkreg | 0x79);
}
/**************************************************************************/
/*!
@overload
@brief Enable Countdown Timer using default interrupt low pulse width.
@param clkFreq One of the PCF8523's Timer Source Clock Frequencies.
See the #PCF8523TimerClockFreq enum for options and associated time ranges.
@param numPeriods The number of clkFreq periods (1-255) to count down.
*/
/**************************************************************************/
void RTC_PCF8523::enableCountdownTimer(PCF8523TimerClockFreq clkFreq,
uint8_t numPeriods) {
enableCountdownTimer(clkFreq, numPeriods, 0);
}
/**************************************************************************/
/*!
@brief Disable the Countdown Timer Interrupt on the PCF8523.
@details For simplicity, this function strictly disables Timer B by setting
TBC to 0. The datasheet describes TBC as the Timer B on/off switch.
Timer B is the only countdown timer implemented at this time.
The following flags have no effect while TBC is off, they are *not* cleared:
- TBM: Timer B will still be set to pulsed mode.
- CTBIE: Timer B interrupt would be triggered if TBC were on.
- CTBF: Timer B flag indicates that interrupt was triggered. Though
typically used for non-pulsed mode, user may wish to query this later.
*/
/**************************************************************************/
void RTC_PCF8523::disableCountdownTimer() {
// TBC disable to stop Timer B clock
write_register(PCF8523_CLKOUTCONTROL,
~1 & read_register(PCF8523_CLKOUTCONTROL));
}
/**************************************************************************/
/*!
@brief Stop all timers, clear their flags and settings on the PCF8523.
@details This includes the Countdown Timer, Second Timer, and any CLKOUT
square wave configured with writeSqwPinMode().
*/
/**************************************************************************/
void RTC_PCF8523::deconfigureAllTimers() {
disableSecondTimer(); // Surgically clears CONTROL_1
write_register(PCF8523_CONTROL_2, 0);
write_register(PCF8523_CLKOUTCONTROL, 0);
write_register(PCF8523_TIMER_B_FRCTL, 0);
write_register(PCF8523_TIMER_B_VALUE, 0);
}
/**************************************************************************/
/*!
@brief Compensate the drift of the RTC.
@details This method sets the "offset" register of the PCF8523,
which can be used to correct a previously measured drift rate.
Two correction modes are available:
- **PCF8523\_TwoHours**: Clock adjustments are performed on
`offset` consecutive minutes every two hours. This is the most
energy-efficient mode.
- **PCF8523\_OneMinute**: Clock adjustments are performed on
`offset` consecutive seconds every minute. Extra adjustments are
performed on the last second of the minute is `abs(offset)>60`.
The `offset` parameter sets the correction amount in units of
roughly 4&nbsp;ppm. The exact unit depends on the selected mode:
| mode | offset unit |
|---------------------|----------------------------------------|
| `PCF8523_TwoHours` | 4.340 ppm = 0.375 s/day = 2.625 s/week |
| `PCF8523_OneMinute` | 4.069 ppm = 0.352 s/day = 2.461 s/week |
See the accompanying sketch pcf8523.ino for an example on how to
use this method.
@param mode Correction mode, either `PCF8523_TwoHours` or
`PCF8523_OneMinute`.
@param offset Correction amount, from -64 to +63. A positive offset
makes the clock slower.
*/
/**************************************************************************/
void RTC_PCF8523::calibrate(Pcf8523OffsetMode mode, int8_t offset) {
write_register(PCF8523_OFFSET, ((uint8_t)offset & 0x7F) | mode);
}

View File

@@ -0,0 +1,123 @@
#include "RTClib.h"
#define PCF8563_ADDRESS 0x51 ///< I2C address for PCF8563
#define PCF8563_CLKOUTCONTROL 0x0D ///< CLKOUT control register
#define PCF8563_CONTROL_1 0x00 ///< Control and status register 1
#define PCF8563_CONTROL_2 0x01 ///< Control and status register 2
#define PCF8563_VL_SECONDS 0x02 ///< register address for VL_SECONDS
#define PCF8563_CLKOUT_MASK 0x83 ///< bitmask for SqwPinMode on CLKOUT pin
/**************************************************************************/
/*!
@brief Start I2C for the PCF8563 and test succesful connection
@param wireInstance pointer to the I2C bus
@return True if Wire can find PCF8563 or false otherwise.
*/
/**************************************************************************/
bool RTC_PCF8563::begin(TwoWire *wireInstance) {
if (i2c_dev)
delete i2c_dev;
i2c_dev = new Adafruit_I2CDevice(PCF8563_ADDRESS, wireInstance);
if (!i2c_dev->begin())
return false;
return true;
}
/**************************************************************************/
/*!
@brief Check the status of the VL bit in the VL_SECONDS register.
@details The PCF8563 has an on-chip voltage-low detector. When VDD drops
below Vlow, bit VL in the VL_seconds register is set to indicate that
the integrity of the clock information is no longer guaranteed.
@return True if the bit is set (VDD droped below Vlow) indicating that
the clock integrity is not guaranteed and false only after the bit is
cleared using adjust()
*/
/**************************************************************************/
bool RTC_PCF8563::lostPower(void) {
return read_register(PCF8563_VL_SECONDS) >> 7;
}
/**************************************************************************/
/*!
@brief Set the date and time
@param dt DateTime to set
*/
/**************************************************************************/
void RTC_PCF8563::adjust(const DateTime &dt) {
uint8_t buffer[8] = {PCF8563_VL_SECONDS, // start at location 2, VL_SECONDS
bin2bcd(dt.second()), bin2bcd(dt.minute()),
bin2bcd(dt.hour()), bin2bcd(dt.day()),
bin2bcd(0), // skip weekdays
bin2bcd(dt.month()), bin2bcd(dt.year() - 2000U)};
i2c_dev->write(buffer, 8);
}
/**************************************************************************/
/*!
@brief Get the current date/time
@return DateTime object containing the current date/time
*/
/**************************************************************************/
DateTime RTC_PCF8563::now() {
uint8_t buffer[7];
buffer[0] = PCF8563_VL_SECONDS; // start at location 2, VL_SECONDS
i2c_dev->write_then_read(buffer, 1, buffer, 7);
return DateTime(bcd2bin(buffer[6]) + 2000U, bcd2bin(buffer[5] & 0x1F),
bcd2bin(buffer[3] & 0x3F), bcd2bin(buffer[2] & 0x3F),
bcd2bin(buffer[1] & 0x7F), bcd2bin(buffer[0] & 0x7F));
}
/**************************************************************************/
/*!
@brief Resets the STOP bit in register Control_1
*/
/**************************************************************************/
void RTC_PCF8563::start(void) {
uint8_t ctlreg = read_register(PCF8563_CONTROL_1);
if (ctlreg & (1 << 5))
write_register(PCF8563_CONTROL_1, ctlreg & ~(1 << 5));
}
/**************************************************************************/
/*!
@brief Sets the STOP bit in register Control_1
*/
/**************************************************************************/
void RTC_PCF8563::stop(void) {
uint8_t ctlreg = read_register(PCF8563_CONTROL_1);
if (!(ctlreg & (1 << 5)))
write_register(PCF8563_CONTROL_1, ctlreg | (1 << 5));
}
/**************************************************************************/
/*!
@brief Is the PCF8563 running? Check the STOP bit in register Control_1
@return 1 if the RTC is running, 0 if not
*/
/**************************************************************************/
uint8_t RTC_PCF8563::isrunning() {
return !((read_register(PCF8563_CONTROL_1) >> 5) & 1);
}
/**************************************************************************/
/*!
@brief Read the mode of the CLKOUT pin on the PCF8563
@return CLKOUT pin mode as a #Pcf8563SqwPinMode enum
*/
/**************************************************************************/
Pcf8563SqwPinMode RTC_PCF8563::readSqwPinMode() {
int mode = read_register(PCF8563_CLKOUTCONTROL);
return static_cast<Pcf8563SqwPinMode>(mode & PCF8563_CLKOUT_MASK);
}
/**************************************************************************/
/*!
@brief Set the CLKOUT pin mode on the PCF8563
@param mode The mode to set, see the #Pcf8563SqwPinMode enum for options
*/
/**************************************************************************/
void RTC_PCF8563::writeSqwPinMode(Pcf8563SqwPinMode mode) {
write_register(PCF8563_CLKOUTCONTROL, mode);
}

View File

@@ -0,0 +1,764 @@
/**************************************************************************/
/*!
@file RTClib.cpp
@mainpage Adafruit RTClib
@section intro Introduction
This is a fork of JeeLab's fantastic real time clock library for Arduino.
For details on using this library with an RTC module like the DS1307, PCF8523,
or DS3231, see the guide at:
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
@section classes Available classes
This library provides the following classes:
- Classes for manipulating dates, times and durations:
- DateTime represents a specific point in time; this is the data
type used for setting and reading the supported RTCs
- TimeSpan represents the length of a time interval
- Interfacing specific RTC chips:
- RTC_DS1307
- RTC_DS3231
- RTC_PCF8523
- RTC_PCF8563
- RTC emulated in software; do not expect much accuracy out of these:
- RTC_Millis is based on `millis()`
- RTC_Micros is based on `micros()`; its drift rate can be tuned by
the user
@section license License
Original library by JeeLabs https://jeelabs.org/pub/docs/rtclib/, released to
the public domain.
This version: MIT (see LICENSE)
*/
/**************************************************************************/
#include "RTClib.h"
#ifdef __AVR__
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#elif defined(ARDUINO_ARCH_SAMD)
// nothing special needed
#elif defined(ARDUINO_SAM_DUE)
#define PROGMEM
#define pgm_read_byte(addr) (*(const unsigned char *)(addr))
#endif
/**************************************************************************/
/*!
@brief Write value to register.
@param reg register address
@param val value to write
*/
/**************************************************************************/
void RTC_I2C::write_register(uint8_t reg, uint8_t val) {
uint8_t buffer[2] = {reg, val};
i2c_dev->write(buffer, 2);
}
/**************************************************************************/
/*!
@brief Read value from register.
@param reg register address
@return value of register
*/
/**************************************************************************/
uint8_t RTC_I2C::read_register(uint8_t reg) {
uint8_t buffer[1];
i2c_dev->write(&reg, 1);
i2c_dev->read(buffer, 1);
return buffer[0];
}
/**************************************************************************/
// utility code, some of this could be exposed in the DateTime API if needed
/**************************************************************************/
/**
Number of days in each month, from January to November. December is not
needed. Omitting it avoids an incompatibility with Paul Stoffregen's Time
library. C.f. https://github.com/adafruit/RTClib/issues/114
*/
const uint8_t daysInMonth[] PROGMEM = {31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30};
/**************************************************************************/
/*!
@brief Given a date, return number of days since 2000/01/01,
valid for 2000--2099
@param y Year
@param m Month
@param d Day
@return Number of days
*/
/**************************************************************************/
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) {
if (y >= 2000U)
y -= 2000U;
uint16_t days = d;
for (uint8_t i = 1; i < m; ++i)
days += pgm_read_byte(daysInMonth + i - 1);
if (m > 2 && y % 4 == 0)
++days;
return days + 365 * y + (y + 3) / 4 - 1;
}
/**************************************************************************/
/*!
@brief Given a number of days, hours, minutes, and seconds, return the
total seconds
@param days Days
@param h Hours
@param m Minutes
@param s Seconds
@return Number of seconds total
*/
/**************************************************************************/
static uint32_t time2ulong(uint16_t days, uint8_t h, uint8_t m, uint8_t s) {
return ((days * 24UL + h) * 60 + m) * 60 + s;
}
/**************************************************************************/
/*!
@brief Constructor from
[Unix time](https://en.wikipedia.org/wiki/Unix_time).
This builds a DateTime from an integer specifying the number of seconds
elapsed since the epoch: 1970-01-01 00:00:00. This number is analogous
to Unix time, with two small differences:
- The Unix epoch is specified to be at 00:00:00
[UTC](https://en.wikipedia.org/wiki/Coordinated_Universal_Time),
whereas this class has no notion of time zones. The epoch used in
this class is then at 00:00:00 on whatever time zone the user chooses
to use, ignoring changes in DST.
- Unix time is conventionally represented with signed numbers, whereas
this constructor takes an unsigned argument. Because of this, it does
_not_ suffer from the
[year 2038 problem](https://en.wikipedia.org/wiki/Year_2038_problem).
If called without argument, it returns the earliest time representable
by this class: 2000-01-01 00:00:00.
@see The `unixtime()` method is the converse of this constructor.
@param t Time elapsed in seconds since 1970-01-01 00:00:00.
*/
/**************************************************************************/
DateTime::DateTime(uint32_t t) {
t -= SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970
ss = t % 60;
t /= 60;
mm = t % 60;
t /= 60;
hh = t % 24;
uint16_t days = t / 24;
uint8_t leap;
for (yOff = 0;; ++yOff) {
leap = yOff % 4 == 0;
if (days < 365U + leap)
break;
days -= 365 + leap;
}
for (m = 1; m < 12; ++m) {
uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1);
if (leap && m == 2)
++daysPerMonth;
if (days < daysPerMonth)
break;
days -= daysPerMonth;
}
d = days + 1;
}
/**************************************************************************/
/*!
@brief Constructor from (year, month, day, hour, minute, second).
@warning If the provided parameters are not valid (e.g. 31 February),
the constructed DateTime will be invalid.
@see The `isValid()` method can be used to test whether the
constructed DateTime is valid.
@param year Either the full year (range: 2000--2099) or the offset from
year 2000 (range: 0--99).
@param month Month number (1--12).
@param day Day of the month (1--31).
@param hour,min,sec Hour (0--23), minute (0--59) and second (0--59).
*/
/**************************************************************************/
DateTime::DateTime(uint16_t year, uint8_t month, uint8_t day, uint8_t hour,
uint8_t min, uint8_t sec) {
if (year >= 2000U)
year -= 2000U;
yOff = year;
m = month;
d = day;
hh = hour;
mm = min;
ss = sec;
}
/**************************************************************************/
/*!
@brief Copy constructor.
@param copy DateTime to copy.
*/
/**************************************************************************/
DateTime::DateTime(const DateTime &copy)
: yOff(copy.yOff), m(copy.m), d(copy.d), hh(copy.hh), mm(copy.mm),
ss(copy.ss) {}
/**************************************************************************/
/*!
@brief Convert a string containing two digits to uint8_t, e.g. "09" returns
9
@param p Pointer to a string containing two digits
*/
/**************************************************************************/
static uint8_t conv2d(const char *p) {
uint8_t v = 0;
if ('0' <= *p && *p <= '9')
v = *p - '0';
return 10 * v + *++p - '0';
}
/**************************************************************************/
/*!
@brief Constructor for generating the build time.
This constructor expects its parameters to be strings in the format
generated by the compiler's preprocessor macros `__DATE__` and
`__TIME__`. Usage:
```
DateTime buildTime(__DATE__, __TIME__);
```
@note The `F()` macro can be used to reduce the RAM footprint, see
the next constructor.
@param date Date string, e.g. "Apr 16 2020".
@param time Time string, e.g. "18:34:56".
*/
/**************************************************************************/
DateTime::DateTime(const char *date, const char *time) {
yOff = conv2d(date + 9);
// Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
switch (date[0]) {
case 'J':
m = (date[1] == 'a') ? 1 : ((date[2] == 'n') ? 6 : 7);
break;
case 'F':
m = 2;
break;
case 'A':
m = date[2] == 'r' ? 4 : 8;
break;
case 'M':
m = date[2] == 'r' ? 3 : 5;
break;
case 'S':
m = 9;
break;
case 'O':
m = 10;
break;
case 'N':
m = 11;
break;
case 'D':
m = 12;
break;
}
d = conv2d(date + 4);
hh = conv2d(time);
mm = conv2d(time + 3);
ss = conv2d(time + 6);
}
/**************************************************************************/
/*!
@brief Memory friendly constructor for generating the build time.
This version is intended to save RAM by keeping the date and time
strings in program memory. Use it with the `F()` macro:
```
DateTime buildTime(F(__DATE__), F(__TIME__));
```
@param date Date PROGMEM string, e.g. F("Apr 16 2020").
@param time Time PROGMEM string, e.g. F("18:34:56").
*/
/**************************************************************************/
DateTime::DateTime(const __FlashStringHelper *date,
const __FlashStringHelper *time) {
char buff[11];
memcpy_P(buff, date, 11);
yOff = conv2d(buff + 9);
// Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
switch (buff[0]) {
case 'J':
m = (buff[1] == 'a') ? 1 : ((buff[2] == 'n') ? 6 : 7);
break;
case 'F':
m = 2;
break;
case 'A':
m = buff[2] == 'r' ? 4 : 8;
break;
case 'M':
m = buff[2] == 'r' ? 3 : 5;
break;
case 'S':
m = 9;
break;
case 'O':
m = 10;
break;
case 'N':
m = 11;
break;
case 'D':
m = 12;
break;
}
d = conv2d(buff + 4);
memcpy_P(buff, time, 8);
hh = conv2d(buff);
mm = conv2d(buff + 3);
ss = conv2d(buff + 6);
}
/**************************************************************************/
/*!
@brief Constructor for creating a DateTime from an ISO8601 date string.
This constructor expects its parameters to be a string in the
https://en.wikipedia.org/wiki/ISO_8601 format, e.g:
"2020-06-25T15:29:37"
Usage:
```
DateTime dt("2020-06-25T15:29:37");
```
@note The year must be > 2000, as only the yOff is considered.
@param iso8601dateTime
A dateTime string in iso8601 format,
e.g. "2020-06-25T15:29:37".
*/
/**************************************************************************/
DateTime::DateTime(const char *iso8601dateTime) {
char ref[] = "2000-01-01T00:00:00";
memcpy(ref, iso8601dateTime, min(strlen(ref), strlen(iso8601dateTime)));
yOff = conv2d(ref + 2);
m = conv2d(ref + 5);
d = conv2d(ref + 8);
hh = conv2d(ref + 11);
mm = conv2d(ref + 14);
ss = conv2d(ref + 17);
}
/**************************************************************************/
/*!
@brief Check whether this DateTime is valid.
@return true if valid, false if not.
*/
/**************************************************************************/
bool DateTime::isValid() const {
if (yOff >= 100)
return false;
DateTime other(unixtime());
return yOff == other.yOff && m == other.m && d == other.d && hh == other.hh &&
mm == other.mm && ss == other.ss;
}
/**************************************************************************/
/*!
@brief Writes the DateTime as a string in a user-defined format.
The _buffer_ parameter should be initialized by the caller with a string
specifying the requested format. This format string may contain any of
the following specifiers:
| specifier | output |
|-----------|--------------------------------------------------------|
| YYYY | the year as a 4-digit number (2000--2099) |
| YY | the year as a 2-digit number (00--99) |
| MM | the month as a 2-digit number (01--12) |
| MMM | the abbreviated English month name ("Jan"--"Dec") |
| DD | the day as a 2-digit number (01--31) |
| DDD | the abbreviated English day of the week ("Mon"--"Sun") |
| AP | either "AM" or "PM" |
| ap | either "am" or "pm" |
| hh | the hour as a 2-digit number (00--23 or 01--12) |
| mm | the minute as a 2-digit number (00--59) |
| ss | the second as a 2-digit number (00--59) |
If either "AP" or "ap" is used, the "hh" specifier uses 12-hour mode
(range: 01--12). Otherwise it works in 24-hour mode (range: 00--23).
The specifiers within _buffer_ will be overwritten with the appropriate
values from the DateTime. Any characters not belonging to one of the
above specifiers are left as-is.
__Example__: The format "DDD, DD MMM YYYY hh:mm:ss" generates an output
of the form "Thu, 16 Apr 2020 18:34:56.
@see The `timestamp()` method provides similar functionnality, but it
returns a `String` object and supports a limited choice of
predefined formats.
@param[in,out] buffer Array of `char` for holding the format description
and the formatted DateTime. Before calling this method, the buffer
should be initialized by the user with the format string. The method
will overwrite the buffer with the formatted date and/or time.
@return A pointer to the provided buffer. This is returned for
convenience, in order to enable idioms such as
`Serial.println(now.toString(buffer));`
*/
/**************************************************************************/
char *DateTime::toString(char *buffer) const {
uint8_t apTag =
(strstr(buffer, "ap") != nullptr) || (strstr(buffer, "AP") != nullptr);
uint8_t hourReformatted = 0, isPM = false;
if (apTag) { // 12 Hour Mode
if (hh == 0) { // midnight
isPM = false;
hourReformatted = 12;
} else if (hh == 12) { // noon
isPM = true;
hourReformatted = 12;
} else if (hh < 12) { // morning
isPM = false;
hourReformatted = hh;
} else { // 1 o'clock or after
isPM = true;
hourReformatted = hh - 12;
}
}
for (size_t i = 0; i < strlen(buffer) - 1; i++) {
if (buffer[i] == 'h' && buffer[i + 1] == 'h') {
if (!apTag) { // 24 Hour Mode
buffer[i] = '0' + hh / 10;
buffer[i + 1] = '0' + hh % 10;
} else { // 12 Hour Mode
buffer[i] = '0' + hourReformatted / 10;
buffer[i + 1] = '0' + hourReformatted % 10;
}
}
if (buffer[i] == 'm' && buffer[i + 1] == 'm') {
buffer[i] = '0' + mm / 10;
buffer[i + 1] = '0' + mm % 10;
}
if (buffer[i] == 's' && buffer[i + 1] == 's') {
buffer[i] = '0' + ss / 10;
buffer[i + 1] = '0' + ss % 10;
}
if (buffer[i] == 'D' && buffer[i + 1] == 'D' && buffer[i + 2] == 'D') {
static PROGMEM const char day_names[] = "SunMonTueWedThuFriSat";
const char *p = &day_names[3 * dayOfTheWeek()];
buffer[i] = pgm_read_byte(p);
buffer[i + 1] = pgm_read_byte(p + 1);
buffer[i + 2] = pgm_read_byte(p + 2);
} else if (buffer[i] == 'D' && buffer[i + 1] == 'D') {
buffer[i] = '0' + d / 10;
buffer[i + 1] = '0' + d % 10;
}
if (buffer[i] == 'M' && buffer[i + 1] == 'M' && buffer[i + 2] == 'M') {
static PROGMEM const char month_names[] =
"JanFebMarAprMayJunJulAugSepOctNovDec";
const char *p = &month_names[3 * (m - 1)];
buffer[i] = pgm_read_byte(p);
buffer[i + 1] = pgm_read_byte(p + 1);
buffer[i + 2] = pgm_read_byte(p + 2);
} else if (buffer[i] == 'M' && buffer[i + 1] == 'M') {
buffer[i] = '0' + m / 10;
buffer[i + 1] = '0' + m % 10;
}
if (buffer[i] == 'Y' && buffer[i + 1] == 'Y' && buffer[i + 2] == 'Y' &&
buffer[i + 3] == 'Y') {
buffer[i] = '2';
buffer[i + 1] = '0';
buffer[i + 2] = '0' + (yOff / 10) % 10;
buffer[i + 3] = '0' + yOff % 10;
} else if (buffer[i] == 'Y' && buffer[i + 1] == 'Y') {
buffer[i] = '0' + (yOff / 10) % 10;
buffer[i + 1] = '0' + yOff % 10;
}
if (buffer[i] == 'A' && buffer[i + 1] == 'P') {
if (isPM) {
buffer[i] = 'P';
buffer[i + 1] = 'M';
} else {
buffer[i] = 'A';
buffer[i + 1] = 'M';
}
} else if (buffer[i] == 'a' && buffer[i + 1] == 'p') {
if (isPM) {
buffer[i] = 'p';
buffer[i + 1] = 'm';
} else {
buffer[i] = 'a';
buffer[i + 1] = 'm';
}
}
}
return buffer;
}
/**************************************************************************/
/*!
@brief Return the hour in 12-hour format.
@return Hour (1--12).
*/
/**************************************************************************/
uint8_t DateTime::twelveHour() const {
if (hh == 0 || hh == 12) { // midnight or noon
return 12;
} else if (hh > 12) { // 1 o'clock or later
return hh - 12;
} else { // morning
return hh;
}
}
/**************************************************************************/
/*!
@brief Return the day of the week.
@return Day of week as an integer from 0 (Sunday) to 6 (Saturday).
*/
/**************************************************************************/
uint8_t DateTime::dayOfTheWeek() const {
uint16_t day = date2days(yOff, m, d);
return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6
}
/**************************************************************************/
/*!
@brief Return Unix time: seconds since 1 Jan 1970.
@see The `DateTime::DateTime(uint32_t)` constructor is the converse of
this method.
@return Number of seconds since 1970-01-01 00:00:00.
*/
/**************************************************************************/
uint32_t DateTime::unixtime(void) const {
uint32_t t;
uint16_t days = date2days(yOff, m, d);
t = time2ulong(days, hh, mm, ss);
t += SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000
return t;
}
/**************************************************************************/
/*!
@brief Convert the DateTime to seconds since 1 Jan 2000
The result can be converted back to a DateTime with:
```cpp
DateTime(SECONDS_FROM_1970_TO_2000 + value)
```
@return Number of seconds since 2000-01-01 00:00:00.
*/
/**************************************************************************/
uint32_t DateTime::secondstime(void) const {
uint32_t t;
uint16_t days = date2days(yOff, m, d);
t = time2ulong(days, hh, mm, ss);
return t;
}
/**************************************************************************/
/*!
@brief Add a TimeSpan to the DateTime object
@param span TimeSpan object
@return New DateTime object with span added to it.
*/
/**************************************************************************/
DateTime DateTime::operator+(const TimeSpan &span) const {
return DateTime(unixtime() + span.totalseconds());
}
/**************************************************************************/
/*!
@brief Subtract a TimeSpan from the DateTime object
@param span TimeSpan object
@return New DateTime object with span subtracted from it.
*/
/**************************************************************************/
DateTime DateTime::operator-(const TimeSpan &span) const {
return DateTime(unixtime() - span.totalseconds());
}
/**************************************************************************/
/*!
@brief Subtract one DateTime from another
@note Since a TimeSpan cannot be negative, the subtracted DateTime
should be less (earlier) than or equal to the one it is
subtracted from.
@param right The DateTime object to subtract from self (the left object)
@return TimeSpan of the difference between DateTimes.
*/
/**************************************************************************/
TimeSpan DateTime::operator-(const DateTime &right) const {
return TimeSpan(unixtime() - right.unixtime());
}
/**************************************************************************/
/*!
@author Anton Rieutskyi
@brief Test if one DateTime is less (earlier) than another.
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right Comparison DateTime object
@return True if the left DateTime is earlier than the right one,
false otherwise.
*/
/**************************************************************************/
bool DateTime::operator<(const DateTime &right) const {
return (yOff + 2000U < right.year() ||
(yOff + 2000U == right.year() &&
(m < right.month() ||
(m == right.month() &&
(d < right.day() ||
(d == right.day() &&
(hh < right.hour() ||
(hh == right.hour() &&
(mm < right.minute() ||
(mm == right.minute() && ss < right.second()))))))))));
}
/**************************************************************************/
/*!
@author Anton Rieutskyi
@brief Test if two DateTime objects are equal.
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right Comparison DateTime object
@return True if both DateTime objects are the same, false otherwise.
*/
/**************************************************************************/
bool DateTime::operator==(const DateTime &right) const {
return (right.year() == yOff + 2000U && right.month() == m &&
right.day() == d && right.hour() == hh && right.minute() == mm &&
right.second() == ss);
}
/**************************************************************************/
/*!
@brief Return a ISO 8601 timestamp as a `String` object.
The generated timestamp conforms to one of the predefined, ISO
8601-compatible formats for representing the date (if _opt_ is
`TIMESTAMP_DATE`), the time (`TIMESTAMP_TIME`), or both
(`TIMESTAMP_FULL`).
@see The `toString()` method provides more general string formatting.
@param opt Format of the timestamp
@return Timestamp string, e.g. "2020-04-16T18:34:56".
*/
/**************************************************************************/
String DateTime::timestamp(timestampOpt opt) const {
char buffer[25]; // large enough for any DateTime, including invalid ones
// Generate timestamp according to opt
switch (opt) {
case TIMESTAMP_TIME:
// Only time
sprintf(buffer, "%02d:%02d:%02d", hh, mm, ss);
break;
case TIMESTAMP_DATE:
// Only date
sprintf(buffer, "%u-%02d-%02d", 2000U + yOff, m, d);
break;
default:
// Full
sprintf(buffer, "%u-%02d-%02dT%02d:%02d:%02d", 2000U + yOff, m, d, hh, mm,
ss);
}
return String(buffer);
}
/**************************************************************************/
/*!
@brief Create a new TimeSpan object in seconds
@param seconds Number of seconds
*/
/**************************************************************************/
TimeSpan::TimeSpan(int32_t seconds) : _seconds(seconds) {}
/**************************************************************************/
/*!
@brief Create a new TimeSpan object using a number of
days/hours/minutes/seconds e.g. Make a TimeSpan of 3 hours and 45 minutes:
new TimeSpan(0, 3, 45, 0);
@param days Number of days
@param hours Number of hours
@param minutes Number of minutes
@param seconds Number of seconds
*/
/**************************************************************************/
TimeSpan::TimeSpan(int16_t days, int8_t hours, int8_t minutes, int8_t seconds)
: _seconds((int32_t)days * 86400L + (int32_t)hours * 3600 +
(int32_t)minutes * 60 + seconds) {}
/**************************************************************************/
/*!
@brief Copy constructor, make a new TimeSpan using an existing one
@param copy The TimeSpan to copy
*/
/**************************************************************************/
TimeSpan::TimeSpan(const TimeSpan &copy) : _seconds(copy._seconds) {}
/**************************************************************************/
/*!
@brief Add two TimeSpans
@param right TimeSpan to add
@return New TimeSpan object, sum of left and right
*/
/**************************************************************************/
TimeSpan TimeSpan::operator+(const TimeSpan &right) const {
return TimeSpan(_seconds + right._seconds);
}
/**************************************************************************/
/*!
@brief Subtract a TimeSpan
@param right TimeSpan to subtract
@return New TimeSpan object, right subtracted from left
*/
/**************************************************************************/
TimeSpan TimeSpan::operator-(const TimeSpan &right) const {
return TimeSpan(_seconds - right._seconds);
}

View File

@@ -0,0 +1,519 @@
/**************************************************************************/
/*!
@file RTClib.h
Original library by JeeLabs http://news.jeelabs.org/code/, released to the
public domain
License: MIT (see LICENSE)
This is a fork of JeeLab's fantastic real time clock library for Arduino.
For details on using this library with an RTC module like the DS1307, PCF8523,
or DS3231, see the guide at:
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
*/
/**************************************************************************/
#ifndef _RTCLIB_H_
#define _RTCLIB_H_
#include <Adafruit_I2CDevice.h>
#include <Arduino.h>
class TimeSpan;
/** Constants */
#define SECONDS_PER_DAY 86400L ///< 60 * 60 * 24
#define SECONDS_FROM_1970_TO_2000 \
946684800 ///< Unixtime for 2000-01-01 00:00:00, useful for initialization
/** DS1307 SQW pin mode settings */
enum Ds1307SqwPinMode {
DS1307_OFF = 0x00, // Low
DS1307_ON = 0x80, // High
DS1307_SquareWave1HZ = 0x10, // 1Hz square wave
DS1307_SquareWave4kHz = 0x11, // 4kHz square wave
DS1307_SquareWave8kHz = 0x12, // 8kHz square wave
DS1307_SquareWave32kHz = 0x13 // 32kHz square wave
};
/** DS3231 SQW pin mode settings */
enum Ds3231SqwPinMode {
DS3231_OFF = 0x1C, /**< Off */
DS3231_SquareWave1Hz = 0x00, /**< 1Hz square wave */
DS3231_SquareWave1kHz = 0x08, /**< 1kHz square wave */
DS3231_SquareWave4kHz = 0x10, /**< 4kHz square wave */
DS3231_SquareWave8kHz = 0x18 /**< 8kHz square wave */
};
/** DS3231 Alarm modes for alarm 1 */
enum Ds3231Alarm1Mode {
DS3231_A1_PerSecond = 0x0F, /**< Alarm once per second */
DS3231_A1_Second = 0x0E, /**< Alarm when seconds match */
DS3231_A1_Minute = 0x0C, /**< Alarm when minutes and seconds match */
DS3231_A1_Hour = 0x08, /**< Alarm when hours, minutes
and seconds match */
DS3231_A1_Date = 0x00, /**< Alarm when date (day of month), hours,
minutes and seconds match */
DS3231_A1_Day = 0x10 /**< Alarm when day (day of week), hours,
minutes and seconds match */
};
/** DS3231 Alarm modes for alarm 2 */
enum Ds3231Alarm2Mode {
DS3231_A2_PerMinute = 0x7, /**< Alarm once per minute
(whenever seconds are 0) */
DS3231_A2_Minute = 0x6, /**< Alarm when minutes match */
DS3231_A2_Hour = 0x4, /**< Alarm when hours and minutes match */
DS3231_A2_Date = 0x0, /**< Alarm when date (day of month), hours
and minutes match */
DS3231_A2_Day = 0x8 /**< Alarm when day (day of week), hours
and minutes match */
};
/** PCF8523 INT/SQW pin mode settings */
enum Pcf8523SqwPinMode {
PCF8523_OFF = 7, /**< Off */
PCF8523_SquareWave1HZ = 6, /**< 1Hz square wave */
PCF8523_SquareWave32HZ = 5, /**< 32Hz square wave */
PCF8523_SquareWave1kHz = 4, /**< 1kHz square wave */
PCF8523_SquareWave4kHz = 3, /**< 4kHz square wave */
PCF8523_SquareWave8kHz = 2, /**< 8kHz square wave */
PCF8523_SquareWave16kHz = 1, /**< 16kHz square wave */
PCF8523_SquareWave32kHz = 0 /**< 32kHz square wave */
};
/** PCF8523 Timer Source Clock Frequencies for Timers A and B */
enum PCF8523TimerClockFreq {
PCF8523_Frequency4kHz = 0, /**< 1/4096th second = 244 microseconds,
max 62.256 milliseconds */
PCF8523_Frequency64Hz = 1, /**< 1/64th second = 15.625 milliseconds,
max 3.984375 seconds */
PCF8523_FrequencySecond = 2, /**< 1 second, max 255 seconds = 4.25 minutes */
PCF8523_FrequencyMinute = 3, /**< 1 minute, max 255 minutes = 4.25 hours */
PCF8523_FrequencyHour = 4, /**< 1 hour, max 255 hours = 10.625 days */
};
/** PCF8523 Timer Interrupt Low Pulse Width options for Timer B only */
enum PCF8523TimerIntPulse {
PCF8523_LowPulse3x64Hz = 0, /**< 46.875 ms 3/64ths second */
PCF8523_LowPulse4x64Hz = 1, /**< 62.500 ms 4/64ths second */
PCF8523_LowPulse5x64Hz = 2, /**< 78.125 ms 5/64ths second */
PCF8523_LowPulse6x64Hz = 3, /**< 93.750 ms 6/64ths second */
PCF8523_LowPulse8x64Hz = 4, /**< 125.000 ms 8/64ths second */
PCF8523_LowPulse10x64Hz = 5, /**< 156.250 ms 10/64ths second */
PCF8523_LowPulse12x64Hz = 6, /**< 187.500 ms 12/64ths second */
PCF8523_LowPulse14x64Hz = 7 /**< 218.750 ms 14/64ths second */
};
/** PCF8523 Offset modes for making temperature/aging/accuracy adjustments */
enum Pcf8523OffsetMode {
PCF8523_TwoHours = 0x00, /**< Offset made every two hours */
PCF8523_OneMinute = 0x80 /**< Offset made every minute */
};
/** PCF8563 CLKOUT pin mode settings */
enum Pcf8563SqwPinMode {
PCF8563_SquareWaveOFF = 0x00, /**< Off */
PCF8563_SquareWave1Hz = 0x83, /**< 1Hz square wave */
PCF8563_SquareWave32Hz = 0x82, /**< 32Hz square wave */
PCF8563_SquareWave1kHz = 0x81, /**< 1kHz square wave */
PCF8563_SquareWave32kHz = 0x80 /**< 32kHz square wave */
};
/**************************************************************************/
/*!
@brief Simple general-purpose date/time class (no TZ / DST / leap
seconds).
This class stores date and time information in a broken-down form, as a
tuple (year, month, day, hour, minute, second). The day of the week is
not stored, but computed on request. The class has no notion of time
zones, daylight saving time, or
[leap seconds](http://en.wikipedia.org/wiki/Leap_second): time is stored
in whatever time zone the user chooses to use.
The class supports dates in the range from 1 Jan 2000 to 31 Dec 2099
inclusive.
*/
/**************************************************************************/
class DateTime {
public:
DateTime(uint32_t t = SECONDS_FROM_1970_TO_2000);
DateTime(uint16_t year, uint8_t month, uint8_t day, uint8_t hour = 0,
uint8_t min = 0, uint8_t sec = 0);
DateTime(const DateTime &copy);
DateTime(const char *date, const char *time);
DateTime(const __FlashStringHelper *date, const __FlashStringHelper *time);
DateTime(const char *iso8601date);
bool isValid() const;
char *toString(char *buffer) const;
/*!
@brief Return the year.
@return Year (range: 2000--2099).
*/
uint16_t year() const { return 2000U + yOff; }
/*!
@brief Return the month.
@return Month number (1--12).
*/
uint8_t month() const { return m; }
/*!
@brief Return the day of the month.
@return Day of the month (1--31).
*/
uint8_t day() const { return d; }
/*!
@brief Return the hour
@return Hour (0--23).
*/
uint8_t hour() const { return hh; }
uint8_t twelveHour() const;
/*!
@brief Return whether the time is PM.
@return 0 if the time is AM, 1 if it's PM.
*/
uint8_t isPM() const { return hh >= 12; }
/*!
@brief Return the minute.
@return Minute (0--59).
*/
uint8_t minute() const { return mm; }
/*!
@brief Return the second.
@return Second (0--59).
*/
uint8_t second() const { return ss; }
uint8_t dayOfTheWeek() const;
/* 32-bit times as seconds since 2000-01-01. */
uint32_t secondstime() const;
/* 32-bit times as seconds since 1970-01-01. */
uint32_t unixtime(void) const;
/*!
Format of the ISO 8601 timestamp generated by `timestamp()`. Each
option corresponds to a `toString()` format as follows:
*/
enum timestampOpt {
TIMESTAMP_FULL, //!< `YYYY-MM-DDThh:mm:ss`
TIMESTAMP_TIME, //!< `hh:mm:ss`
TIMESTAMP_DATE //!< `YYYY-MM-DD`
};
String timestamp(timestampOpt opt = TIMESTAMP_FULL) const;
DateTime operator+(const TimeSpan &span) const;
DateTime operator-(const TimeSpan &span) const;
TimeSpan operator-(const DateTime &right) const;
bool operator<(const DateTime &right) const;
/*!
@brief Test if one DateTime is greater (later) than another.
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right DateTime object to compare
@return True if the left DateTime is later than the right one,
false otherwise
*/
bool operator>(const DateTime &right) const { return right < *this; }
/*!
@brief Test if one DateTime is less (earlier) than or equal to another
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right DateTime object to compare
@return True if the left DateTime is earlier than or equal to the
right one, false otherwise
*/
bool operator<=(const DateTime &right) const { return !(*this > right); }
/*!
@brief Test if one DateTime is greater (later) than or equal to another
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right DateTime object to compare
@return True if the left DateTime is later than or equal to the right
one, false otherwise
*/
bool operator>=(const DateTime &right) const { return !(*this < right); }
bool operator==(const DateTime &right) const;
/*!
@brief Test if two DateTime objects are not equal.
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right DateTime object to compare
@return True if the two objects are not equal, false if they are
*/
bool operator!=(const DateTime &right) const { return !(*this == right); }
protected:
uint8_t yOff; ///< Year offset from 2000
uint8_t m; ///< Month 1-12
uint8_t d; ///< Day 1-31
uint8_t hh; ///< Hours 0-23
uint8_t mm; ///< Minutes 0-59
uint8_t ss; ///< Seconds 0-59
};
/**************************************************************************/
/*!
@brief Timespan which can represent changes in time with seconds accuracy.
*/
/**************************************************************************/
class TimeSpan {
public:
TimeSpan(int32_t seconds = 0);
TimeSpan(int16_t days, int8_t hours, int8_t minutes, int8_t seconds);
TimeSpan(const TimeSpan &copy);
/*!
@brief Number of days in the TimeSpan
e.g. 4
@return int16_t days
*/
int16_t days() const { return _seconds / 86400L; }
/*!
@brief Number of hours in the TimeSpan
This is not the total hours, it includes the days
e.g. 4 days, 3 hours - NOT 99 hours
@return int8_t hours
*/
int8_t hours() const { return _seconds / 3600 % 24; }
/*!
@brief Number of minutes in the TimeSpan
This is not the total minutes, it includes days/hours
e.g. 4 days, 3 hours, 27 minutes
@return int8_t minutes
*/
int8_t minutes() const { return _seconds / 60 % 60; }
/*!
@brief Number of seconds in the TimeSpan
This is not the total seconds, it includes the days/hours/minutes
e.g. 4 days, 3 hours, 27 minutes, 7 seconds
@return int8_t seconds
*/
int8_t seconds() const { return _seconds % 60; }
/*!
@brief Total number of seconds in the TimeSpan, e.g. 358027
@return int32_t seconds
*/
int32_t totalseconds() const { return _seconds; }
TimeSpan operator+(const TimeSpan &right) const;
TimeSpan operator-(const TimeSpan &right) const;
protected:
int32_t _seconds; ///< Actual TimeSpan value is stored as seconds
};
/**************************************************************************/
/*!
@brief A generic I2C RTC base class. DO NOT USE DIRECTLY
*/
/**************************************************************************/
class RTC_I2C {
protected:
/*!
@brief Convert a binary coded decimal value to binary. RTC stores
time/date values as BCD.
@param val BCD value
@return Binary value
*/
static uint8_t bcd2bin(uint8_t val) { return val - 6 * (val >> 4); }
/*!
@brief Convert a binary value to BCD format for the RTC registers
@param val Binary value
@return BCD value
*/
static uint8_t bin2bcd(uint8_t val) { return val + 6 * (val / 10); }
Adafruit_I2CDevice *i2c_dev = NULL; ///< Pointer to I2C bus interface
uint8_t read_register(uint8_t reg);
void write_register(uint8_t reg, uint8_t val);
};
/**************************************************************************/
/*!
@brief RTC based on the DS1307 chip connected via I2C and the Wire library
*/
/**************************************************************************/
class RTC_DS1307 : RTC_I2C {
public:
bool begin(TwoWire *wireInstance = &Wire);
void adjust(const DateTime &dt);
uint8_t isrunning(void);
DateTime now();
Ds1307SqwPinMode readSqwPinMode();
void writeSqwPinMode(Ds1307SqwPinMode mode);
uint8_t readnvram(uint8_t address);
void readnvram(uint8_t *buf, uint8_t size, uint8_t address);
void writenvram(uint8_t address, uint8_t data);
void writenvram(uint8_t address, const uint8_t *buf, uint8_t size);
};
/**************************************************************************/
/*!
@brief RTC based on the DS3231 chip connected via I2C and the Wire library
*/
/**************************************************************************/
class RTC_DS3231 : RTC_I2C {
public:
bool begin(TwoWire *wireInstance = &Wire);
void adjust(const DateTime &dt);
bool lostPower(void);
DateTime now();
Ds3231SqwPinMode readSqwPinMode();
void writeSqwPinMode(Ds3231SqwPinMode mode);
bool setAlarm1(const DateTime &dt, Ds3231Alarm1Mode alarm_mode);
bool setAlarm2(const DateTime &dt, Ds3231Alarm2Mode alarm_mode);
DateTime getAlarm1();
DateTime getAlarm2();
Ds3231Alarm1Mode getAlarm1Mode();
Ds3231Alarm2Mode getAlarm2Mode();
void disableAlarm(uint8_t alarm_num);
void clearAlarm(uint8_t alarm_num);
bool alarmFired(uint8_t alarm_num);
void enable32K(void);
void disable32K(void);
bool isEnabled32K(void);
float getTemperature(); // in Celsius degree
/*!
@brief Convert the day of the week to a representation suitable for
storing in the DS3231: from 1 (Monday) to 7 (Sunday).
@param d Day of the week as represented by the library:
from 0 (Sunday) to 6 (Saturday).
@return the converted value
*/
static uint8_t dowToDS3231(uint8_t d) { return d == 0 ? 7 : d; }
};
/**************************************************************************/
/*!
@brief RTC based on the PCF8523 chip connected via I2C and the Wire library
*/
/**************************************************************************/
class RTC_PCF8523 : RTC_I2C {
public:
bool begin(TwoWire *wireInstance = &Wire);
void adjust(const DateTime &dt);
bool lostPower(void);
bool initialized(void);
DateTime now();
void start(void);
void stop(void);
uint8_t isrunning();
Pcf8523SqwPinMode readSqwPinMode();
void writeSqwPinMode(Pcf8523SqwPinMode mode);
void enableSecondTimer(void);
void disableSecondTimer(void);
void enableCountdownTimer(PCF8523TimerClockFreq clkFreq, uint8_t numPeriods,
uint8_t lowPulseWidth);
void enableCountdownTimer(PCF8523TimerClockFreq clkFreq, uint8_t numPeriods);
void disableCountdownTimer(void);
void deconfigureAllTimers(void);
void calibrate(Pcf8523OffsetMode mode, int8_t offset);
};
/**************************************************************************/
/*!
@brief RTC based on the PCF8563 chip connected via I2C and the Wire library
*/
/**************************************************************************/
class RTC_PCF8563 : RTC_I2C {
public:
bool begin(TwoWire *wireInstance = &Wire);
bool lostPower(void);
void adjust(const DateTime &dt);
DateTime now();
void start(void);
void stop(void);
uint8_t isrunning();
Pcf8563SqwPinMode readSqwPinMode();
void writeSqwPinMode(Pcf8563SqwPinMode mode);
};
/**************************************************************************/
/*!
@brief RTC using the internal millis() clock, has to be initialized before
use. NOTE: this is immune to millis() rollover events.
*/
/**************************************************************************/
class RTC_Millis {
public:
/*!
@brief Start the RTC
@param dt DateTime object with the date/time to set
*/
void begin(const DateTime &dt) { adjust(dt); }
void adjust(const DateTime &dt);
DateTime now();
protected:
/*!
Unix time from the previous call to now().
This, together with `lastMillis`, defines the alignment between
the `millis()` timescale and the Unix timescale. Both variables
are updated on each call to now(), which prevents rollover issues.
*/
uint32_t lastUnix;
/*!
`millis()` value corresponding `lastUnix`.
Note that this is **not** the `millis()` value of the last call to
now(): it's the `millis()` value corresponding to the last **full
second** of Unix time preceding the last call to now().
*/
uint32_t lastMillis;
};
/**************************************************************************/
/*!
@brief RTC using the internal micros() clock, has to be initialized before
use. Unlike RTC_Millis, this can be tuned in order to compensate for
the natural drift of the system clock. Note that now() has to be
called more frequently than the micros() rollover period, which is
approximately 71.6 minutes.
*/
/**************************************************************************/
class RTC_Micros {
public:
/*!
@brief Start the RTC
@param dt DateTime object with the date/time to set
*/
void begin(const DateTime &dt) { adjust(dt); }
void adjust(const DateTime &dt);
void adjustDrift(int ppm);
DateTime now();
protected:
/*!
Number of microseconds reported by `micros()` per "true"
(calibrated) second.
*/
uint32_t microsPerSecond = 1000000;
/*!
Unix time from the previous call to now().
The timing logic is identical to RTC_Millis.
*/
uint32_t lastUnix;
/*!
`micros()` value corresponding to `lastUnix`.
*/
uint32_t lastMicros;
};
#endif // _RTCLIB_H_