First Commit

This commit is contained in:
MindCreeper03
2025-02-27 19:31:50 +01:00
parent bcbb6aff9a
commit e490df1715
2470 changed files with 1479965 additions and 0 deletions

1857
bsec_iot_example/bme68x.c Normal file

File diff suppressed because it is too large Load Diff

323
bsec_iot_example/bme68x.h Normal file
View File

@@ -0,0 +1,323 @@
/**
* Copyright (c) 2023 Bosch Sensortec GmbH. All rights reserved.
*
* BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* @file bme68x.h
* @date 2023-02-07
* @version v4.4.8
*
*/
/*!
* @defgroup bme68x BME68X
* @brief <a href="https://www.bosch-sensortec.com/bst/products/all_products/bme680">Product Overview</a>
* and <a href="https://github.com/BoschSensortec/BME68x-Sensor-API">Sensor API Source Code</a>
*/
#ifndef BME68X_H_
#define BME68X_H_
#include "bme68x_defs.h"
/* CPP guard */
#ifdef __cplusplus
extern "C" {
#endif
/**
* \ingroup bme68x
* \defgroup bme68xApiInit Initialization
* @brief Initialize the sensor and device structure
*/
/*!
* \ingroup bme68xApiInit
* \page bme68x_api_bme68x_init bme68x_init
* \code
* int8_t bme68x_init(struct bme68x_dev *dev);
* \endcode
* @details This API reads the chip-id of the sensor which is the first step to
* verify the sensor and also calibrates the sensor
* As this API is the entry point, call this API before using other APIs.
*
* @param[in,out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_init(struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiRegister Registers
* @brief Generic API for accessing sensor registers
*/
/*!
* \ingroup bme68xApiRegister
* \page bme68x_api_bme68x_set_regs bme68x_set_regs
* \code
* int8_t bme68x_set_regs(const uint8_t reg_addr, const uint8_t *reg_data, uint32_t len, struct bme68x_dev *dev)
* \endcode
* @details This API writes the given data to the register address of the sensor
*
* @param[in] reg_addr : Register addresses to where the data is to be written
* @param[in] reg_data : Pointer to data buffer which is to be written
* in the reg_addr of sensor.
* @param[in] len : No of bytes of data to write
* @param[in,out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint32_t len, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiRegister
* \page bme68x_api_bme68x_get_regs bme68x_get_regs
* \code
* int8_t bme68x_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, struct bme68x_dev *dev)
* \endcode
* @details This API reads the data from the given register address of sensor.
*
* @param[in] reg_addr : Register address from where the data to be read
* @param[out] reg_data : Pointer to data buffer to store the read data.
* @param[in] len : No of bytes of data to be read.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiSystem System
* @brief API that performs system-level operations
*/
/*!
* \ingroup bme68xApiSystem
* \page bme68x_api_bme68x_soft_reset bme68x_soft_reset
* \code
* int8_t bme68x_soft_reset(struct bme68x_dev *dev);
* \endcode
* @details This API soft-resets the sensor.
*
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_soft_reset(struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiOm Operation mode
* @brief API to configure operation mode
*/
/*!
* \ingroup bme68xApiOm
* \page bme68x_api_bme68x_set_op_mode bme68x_set_op_mode
* \code
* int8_t bme68x_set_op_mode(const uint8_t op_mode, struct bme68x_dev *dev);
* \endcode
* @details This API is used to set the operation mode of the sensor
* @param[in] op_mode : Desired operation mode.
* @param[in] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_set_op_mode(const uint8_t op_mode, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiOm
* \page bme68x_api_bme68x_get_op_mode bme68x_get_op_mode
* \code
* int8_t bme68x_get_op_mode(uint8_t *op_mode, struct bme68x_dev *dev);
* \endcode
* @details This API is used to get the operation mode of the sensor.
*
* @param[out] op_mode : Desired operation mode.
* @param[in,out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_op_mode(uint8_t *op_mode, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_get_meas_dur bme68x_get_meas_dur
* \code
* uint32_t bme68x_get_meas_dur(const uint8_t op_mode, struct bme68x_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to get the remaining duration that can be used for heating.
*
* @param[in] op_mode : Desired operation mode.
* @param[in] conf : Desired sensor configuration.
* @param[in] dev : Structure instance of bme68x_dev
*
* @return Measurement duration calculated in microseconds
*/
uint32_t bme68x_get_meas_dur(const uint8_t op_mode, struct bme68x_conf *conf, struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiData Data Read out
* @brief Read our data from the sensor
*/
/*!
* \ingroup bme68xApiData
* \page bme68x_api_bme68x_get_data bme68x_get_data
* \code
* int8_t bme68x_get_data(uint8_t op_mode, struct bme68x_data *data, uint8_t *n_data, struct bme68x_dev *dev);
* \endcode
* @details This API reads the pressure, temperature and humidity and gas data
* from the sensor, compensates the data and store it in the bme68x_data
* structure instance passed by the user.
*
* @param[in] op_mode : Expected operation mode.
* @param[out] data : Structure instance to hold the data.
* @param[out] n_data : Number of data instances available.
* @param[in,out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_data(uint8_t op_mode, struct bme68x_data *data, uint8_t *n_data, struct bme68x_dev *dev);
/**
* \ingroup bme68x
* \defgroup bme68xApiConfig Configuration
* @brief Configuration API of sensor
*/
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_set_conf bme68x_set_conf
* \code
* int8_t bme68x_set_conf(struct bme68x_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to set the oversampling, filter and odr configuration
*
* @param[in] conf : Desired sensor configuration.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_set_conf(struct bme68x_conf *conf, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_get_conf bme68x_get_conf
* \code
* int8_t bme68x_get_conf(struct bme68x_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to get the oversampling, filter and odr
* configuration
*
* @param[out] conf : Present sensor configuration.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_conf(struct bme68x_conf *conf, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_set_heatr_conf bme68x_set_heatr_conf
* \code
* int8_t bme68x_set_heatr_conf(uint8_t op_mode, const struct bme68x_heatr_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to set the gas configuration of the sensor.
*
* @param[in] op_mode : Expected operation mode of the sensor.
* @param[in] conf : Desired heating configuration.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_set_heatr_conf(uint8_t op_mode, const struct bme68x_heatr_conf *conf, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiConfig
* \page bme68x_api_bme68x_get_heatr_conf bme68x_get_heatr_conf
* \code
* int8_t bme68x_get_heatr_conf(const struct bme68x_heatr_conf *conf, struct bme68x_dev *dev);
* \endcode
* @details This API is used to get the gas configuration of the sensor.
*
* @param[out] conf : Current configurations of the gas sensor.
* @param[in,out] dev : Structure instance of bme68x_dev.
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_get_heatr_conf(const struct bme68x_heatr_conf *conf, struct bme68x_dev *dev);
/*!
* \ingroup bme68xApiSystem
* \page bme68x_api_bme68x_selftest_check bme68x_selftest_check
* \code
* int8_t bme68x_selftest_check(const struct bme68x_dev *dev);
* \endcode
* @details This API performs Self-test of low gas variant of BME68X
*
* @param[in, out] dev : Structure instance of bme68x_dev
*
* @return Result of API execution status
* @retval 0 -> Success
* @retval < 0 -> Fail
*/
int8_t bme68x_selftest_check(const struct bme68x_dev *dev);
#ifdef __cplusplus
}
#endif /* End of CPP guard */
#endif /* BME68X_H_ */

View File

@@ -0,0 +1,972 @@
/**
* Copyright (c) 2023 Bosch Sensortec GmbH. All rights reserved.
*
* BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* @file bme68x_defs.h
* @date 2023-02-07
* @version v4.4.8
*
*/
/*! @cond DOXYGEN_SUPRESS */
#ifndef BME68X_DEFS_H_
#define BME68X_DEFS_H_
/********************************************************* */
/*! Header includes */
/********************************************************* */
#ifdef __KERNEL__
#include <linux/types.h>
#include <linux/kernel.h>
#else
#include <stdint.h>
#include <stddef.h>
#endif
/********************************************************* */
/*! Common Macros */
/********************************************************* */
#ifdef __KERNEL__
#if !defined(UINT8_C) && !defined(INT8_C)
#define INT8_C(x) S8_C(x)
#define UINT8_C(x) U8_C(x)
#endif
#if !defined(UINT16_C) && !defined(INT16_C)
#define INT16_C(x) S16_C(x)
#define UINT16_C(x) U16_C(x)
#endif
#if !defined(INT32_C) && !defined(UINT32_C)
#define INT32_C(x) S32_C(x)
#define UINT32_C(x) U32_C(x)
#endif
#if !defined(INT64_C) && !defined(UINT64_C)
#define INT64_C(x) S64_C(x)
#define UINT64_C(x) U64_C(x)
#endif
#endif
/*! C standard macros */
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *) 0)
#endif
#endif
#ifndef BME68X_DO_NOT_USE_FPU
/* Comment or un-comment the macro to provide floating point data output */
#define BME68X_USE_FPU
#endif
/* Period between two polls (value can be given by user) */
#ifndef BME68X_PERIOD_POLL
#define BME68X_PERIOD_POLL UINT32_C(10000)
#endif
/* BME68X unique chip identifier */
#define BME68X_CHIP_ID UINT8_C(0x61)
/* Period for a soft reset */
#define BME68X_PERIOD_RESET UINT32_C(10000)
/* BME68X lower I2C address */
#define BME68X_I2C_ADDR_LOW UINT8_C(0x76)
/* BME68X higher I2C address */
#define BME68X_I2C_ADDR_HIGH UINT8_C(0x77)
/* Soft reset command */
#define BME68X_SOFT_RESET_CMD UINT8_C(0xb6)
/* Return code definitions */
/* Success */
#define BME68X_OK INT8_C(0)
/* Errors */
/* Null pointer passed */
#define BME68X_E_NULL_PTR INT8_C(-1)
/* Communication failure */
#define BME68X_E_COM_FAIL INT8_C(-2)
/* Sensor not found */
#define BME68X_E_DEV_NOT_FOUND INT8_C(-3)
/* Incorrect length parameter */
#define BME68X_E_INVALID_LENGTH INT8_C(-4)
/* Self test fail error */
#define BME68X_E_SELF_TEST INT8_C(-5)
/* Warnings */
/* Define a valid operation mode */
#define BME68X_W_DEFINE_OP_MODE INT8_C(1)
/* No new data was found */
#define BME68X_W_NO_NEW_DATA INT8_C(2)
/* Define the shared heating duration */
#define BME68X_W_DEFINE_SHD_HEATR_DUR INT8_C(3)
/* Information - only available via bme68x_dev.info_msg */
#define BME68X_I_PARAM_CORR UINT8_C(1)
/* Register map addresses in I2C */
/* Register for 3rd group of coefficients */
#define BME68X_REG_COEFF3 UINT8_C(0x00)
/* 0th Field address*/
#define BME68X_REG_FIELD0 UINT8_C(0x1d)
/* 0th Current DAC address*/
#define BME68X_REG_IDAC_HEAT0 UINT8_C(0x50)
/* 0th Res heat address */
#define BME68X_REG_RES_HEAT0 UINT8_C(0x5a)
/* 0th Gas wait address */
#define BME68X_REG_GAS_WAIT0 UINT8_C(0x64)
/* Shared heating duration address */
#define BME68X_REG_SHD_HEATR_DUR UINT8_C(0x6E)
/* CTRL_GAS_0 address */
#define BME68X_REG_CTRL_GAS_0 UINT8_C(0x70)
/* CTRL_GAS_1 address */
#define BME68X_REG_CTRL_GAS_1 UINT8_C(0x71)
/* CTRL_HUM address */
#define BME68X_REG_CTRL_HUM UINT8_C(0x72)
/* CTRL_MEAS address */
#define BME68X_REG_CTRL_MEAS UINT8_C(0x74)
/* CONFIG address */
#define BME68X_REG_CONFIG UINT8_C(0x75)
/* MEM_PAGE address */
#define BME68X_REG_MEM_PAGE UINT8_C(0xf3)
/* Unique ID address */
#define BME68X_REG_UNIQUE_ID UINT8_C(0x83)
/* Register for 1st group of coefficients */
#define BME68X_REG_COEFF1 UINT8_C(0x8a)
/* Chip ID address */
#define BME68X_REG_CHIP_ID UINT8_C(0xd0)
/* Soft reset address */
#define BME68X_REG_SOFT_RESET UINT8_C(0xe0)
/* Register for 2nd group of coefficients */
#define BME68X_REG_COEFF2 UINT8_C(0xe1)
/* Variant ID Register */
#define BME68X_REG_VARIANT_ID UINT8_C(0xF0)
/* Enable/Disable macros */
/* Enable */
#define BME68X_ENABLE UINT8_C(0x01)
/* Disable */
#define BME68X_DISABLE UINT8_C(0x00)
/* Variant ID macros */
/* Low Gas variant */
#define BME68X_VARIANT_GAS_LOW UINT8_C(0x00)
/* High Gas variant */
#define BME68X_VARIANT_GAS_HIGH UINT8_C(0x01)
/* Oversampling setting macros */
/* Switch off measurement */
#define BME68X_OS_NONE UINT8_C(0)
/* Perform 1 measurement */
#define BME68X_OS_1X UINT8_C(1)
/* Perform 2 measurements */
#define BME68X_OS_2X UINT8_C(2)
/* Perform 4 measurements */
#define BME68X_OS_4X UINT8_C(3)
/* Perform 8 measurements */
#define BME68X_OS_8X UINT8_C(4)
/* Perform 16 measurements */
#define BME68X_OS_16X UINT8_C(5)
/* IIR Filter settings */
/* Switch off the filter */
#define BME68X_FILTER_OFF UINT8_C(0)
/* Filter coefficient of 2 */
#define BME68X_FILTER_SIZE_1 UINT8_C(1)
/* Filter coefficient of 4 */
#define BME68X_FILTER_SIZE_3 UINT8_C(2)
/* Filter coefficient of 8 */
#define BME68X_FILTER_SIZE_7 UINT8_C(3)
/* Filter coefficient of 16 */
#define BME68X_FILTER_SIZE_15 UINT8_C(4)
/* Filter coefficient of 32 */
#define BME68X_FILTER_SIZE_31 UINT8_C(5)
/* Filter coefficient of 64 */
#define BME68X_FILTER_SIZE_63 UINT8_C(6)
/* Filter coefficient of 128 */
#define BME68X_FILTER_SIZE_127 UINT8_C(7)
/* ODR/Standby time macros */
/* Standby time of 0.59ms */
#define BME68X_ODR_0_59_MS UINT8_C(0)
/* Standby time of 62.5ms */
#define BME68X_ODR_62_5_MS UINT8_C(1)
/* Standby time of 125ms */
#define BME68X_ODR_125_MS UINT8_C(2)
/* Standby time of 250ms */
#define BME68X_ODR_250_MS UINT8_C(3)
/* Standby time of 500ms */
#define BME68X_ODR_500_MS UINT8_C(4)
/* Standby time of 1s */
#define BME68X_ODR_1000_MS UINT8_C(5)
/* Standby time of 10ms */
#define BME68X_ODR_10_MS UINT8_C(6)
/* Standby time of 20ms */
#define BME68X_ODR_20_MS UINT8_C(7)
/* No standby time */
#define BME68X_ODR_NONE UINT8_C(8)
/* Operating mode macros */
/* Sleep operation mode */
#define BME68X_SLEEP_MODE UINT8_C(0)
/* Forced operation mode */
#define BME68X_FORCED_MODE UINT8_C(1)
/* Parallel operation mode */
#define BME68X_PARALLEL_MODE UINT8_C(2)
/* Sequential operation mode */
#define BME68X_SEQUENTIAL_MODE UINT8_C(3)
/* SPI page macros */
/* SPI memory page 0 */
#define BME68X_MEM_PAGE0 UINT8_C(0x10)
/* SPI memory page 1 */
#define BME68X_MEM_PAGE1 UINT8_C(0x00)
/* Coefficient index macros */
/* Length for all coefficients */
#define BME68X_LEN_COEFF_ALL UINT8_C(42)
/* Length for 1st group of coefficients */
#define BME68X_LEN_COEFF1 UINT8_C(23)
/* Length for 2nd group of coefficients */
#define BME68X_LEN_COEFF2 UINT8_C(14)
/* Length for 3rd group of coefficients */
#define BME68X_LEN_COEFF3 UINT8_C(5)
/* Length of the field */
#define BME68X_LEN_FIELD UINT8_C(17)
/* Length between two fields */
#define BME68X_LEN_FIELD_OFFSET UINT8_C(17)
/* Length of the configuration register */
#define BME68X_LEN_CONFIG UINT8_C(5)
/* Length of the interleaved buffer */
#define BME68X_LEN_INTERLEAVE_BUFF UINT8_C(20)
/* Coefficient index macros */
/* Coefficient T2 LSB position */
#define BME68X_IDX_T2_LSB (0)
/* Coefficient T2 MSB position */
#define BME68X_IDX_T2_MSB (1)
/* Coefficient T3 position */
#define BME68X_IDX_T3 (2)
/* Coefficient P1 LSB position */
#define BME68X_IDX_P1_LSB (4)
/* Coefficient P1 MSB position */
#define BME68X_IDX_P1_MSB (5)
/* Coefficient P2 LSB position */
#define BME68X_IDX_P2_LSB (6)
/* Coefficient P2 MSB position */
#define BME68X_IDX_P2_MSB (7)
/* Coefficient P3 position */
#define BME68X_IDX_P3 (8)
/* Coefficient P4 LSB position */
#define BME68X_IDX_P4_LSB (10)
/* Coefficient P4 MSB position */
#define BME68X_IDX_P4_MSB (11)
/* Coefficient P5 LSB position */
#define BME68X_IDX_P5_LSB (12)
/* Coefficient P5 MSB position */
#define BME68X_IDX_P5_MSB (13)
/* Coefficient P7 position */
#define BME68X_IDX_P7 (14)
/* Coefficient P6 position */
#define BME68X_IDX_P6 (15)
/* Coefficient P8 LSB position */
#define BME68X_IDX_P8_LSB (18)
/* Coefficient P8 MSB position */
#define BME68X_IDX_P8_MSB (19)
/* Coefficient P9 LSB position */
#define BME68X_IDX_P9_LSB (20)
/* Coefficient P9 MSB position */
#define BME68X_IDX_P9_MSB (21)
/* Coefficient P10 position */
#define BME68X_IDX_P10 (22)
/* Coefficient H2 MSB position */
#define BME68X_IDX_H2_MSB (23)
/* Coefficient H2 LSB position */
#define BME68X_IDX_H2_LSB (24)
/* Coefficient H1 LSB position */
#define BME68X_IDX_H1_LSB (24)
/* Coefficient H1 MSB position */
#define BME68X_IDX_H1_MSB (25)
/* Coefficient H3 position */
#define BME68X_IDX_H3 (26)
/* Coefficient H4 position */
#define BME68X_IDX_H4 (27)
/* Coefficient H5 position */
#define BME68X_IDX_H5 (28)
/* Coefficient H6 position */
#define BME68X_IDX_H6 (29)
/* Coefficient H7 position */
#define BME68X_IDX_H7 (30)
/* Coefficient T1 LSB position */
#define BME68X_IDX_T1_LSB (31)
/* Coefficient T1 MSB position */
#define BME68X_IDX_T1_MSB (32)
/* Coefficient GH2 LSB position */
#define BME68X_IDX_GH2_LSB (33)
/* Coefficient GH2 MSB position */
#define BME68X_IDX_GH2_MSB (34)
/* Coefficient GH1 position */
#define BME68X_IDX_GH1 (35)
/* Coefficient GH3 position */
#define BME68X_IDX_GH3 (36)
/* Coefficient res heat value position */
#define BME68X_IDX_RES_HEAT_VAL (37)
/* Coefficient res heat range position */
#define BME68X_IDX_RES_HEAT_RANGE (39)
/* Coefficient range switching error position */
#define BME68X_IDX_RANGE_SW_ERR (41)
/* Gas measurement macros */
/* Disable gas measurement */
#define BME68X_DISABLE_GAS_MEAS UINT8_C(0x00)
/* Enable gas measurement low */
#define BME68X_ENABLE_GAS_MEAS_L UINT8_C(0x01)
/* Enable gas measurement high */
#define BME68X_ENABLE_GAS_MEAS_H UINT8_C(0x02)
/* Heater control macros */
/* Enable heater */
#define BME68X_ENABLE_HEATER UINT8_C(0x00)
/* Disable heater */
#define BME68X_DISABLE_HEATER UINT8_C(0x01)
#ifdef BME68X_USE_FPU
/* 0 degree Celsius */
#define BME68X_MIN_TEMPERATURE INT16_C(0)
/* 60 degree Celsius */
#define BME68X_MAX_TEMPERATURE INT16_C(60)
/* 900 hecto Pascals */
#define BME68X_MIN_PRESSURE UINT32_C(90000)
/* 1100 hecto Pascals */
#define BME68X_MAX_PRESSURE UINT32_C(110000)
/* 20% relative humidity */
#define BME68X_MIN_HUMIDITY UINT32_C(20)
/* 80% relative humidity*/
#define BME68X_MAX_HUMIDITY UINT32_C(80)
#else
/* 0 degree Celsius */
#define BME68X_MIN_TEMPERATURE INT16_C(0)
/* 60 degree Celsius */
#define BME68X_MAX_TEMPERATURE INT16_C(6000)
/* 900 hecto Pascals */
#define BME68X_MIN_PRESSURE UINT32_C(90000)
/* 1100 hecto Pascals */
#define BME68X_MAX_PRESSURE UINT32_C(110000)
/* 20% relative humidity */
#define BME68X_MIN_HUMIDITY UINT32_C(20000)
/* 80% relative humidity*/
#define BME68X_MAX_HUMIDITY UINT32_C(80000)
#endif
#define BME68X_HEATR_DUR1 UINT16_C(1000)
#define BME68X_HEATR_DUR2 UINT16_C(2000)
#define BME68X_HEATR_DUR1_DELAY UINT32_C(1000000)
#define BME68X_HEATR_DUR2_DELAY UINT32_C(2000000)
#define BME68X_N_MEAS UINT8_C(6)
#define BME68X_LOW_TEMP UINT8_C(150)
#define BME68X_HIGH_TEMP UINT16_C(350)
/* Mask macros */
/* Mask for number of conversions */
#define BME68X_NBCONV_MSK UINT8_C(0X0f)
/* Mask for IIR filter */
#define BME68X_FILTER_MSK UINT8_C(0X1c)
/* Mask for ODR[3] */
#define BME68X_ODR3_MSK UINT8_C(0x80)
/* Mask for ODR[2:0] */
#define BME68X_ODR20_MSK UINT8_C(0xe0)
/* Mask for temperature oversampling */
#define BME68X_OST_MSK UINT8_C(0Xe0)
/* Mask for pressure oversampling */
#define BME68X_OSP_MSK UINT8_C(0X1c)
/* Mask for humidity oversampling */
#define BME68X_OSH_MSK UINT8_C(0X07)
/* Mask for heater control */
#define BME68X_HCTRL_MSK UINT8_C(0x08)
/* Mask for run gas */
#define BME68X_RUN_GAS_MSK UINT8_C(0x30)
/* Mask for operation mode */
#define BME68X_MODE_MSK UINT8_C(0x03)
/* Mask for res heat range */
#define BME68X_RHRANGE_MSK UINT8_C(0x30)
/* Mask for range switching error */
#define BME68X_RSERROR_MSK UINT8_C(0xf0)
/* Mask for new data */
#define BME68X_NEW_DATA_MSK UINT8_C(0x80)
/* Mask for gas index */
#define BME68X_GAS_INDEX_MSK UINT8_C(0x0f)
/* Mask for gas range */
#define BME68X_GAS_RANGE_MSK UINT8_C(0x0f)
/* Mask for gas measurement valid */
#define BME68X_GASM_VALID_MSK UINT8_C(0x20)
/* Mask for heater stability */
#define BME68X_HEAT_STAB_MSK UINT8_C(0x10)
/* Mask for SPI memory page */
#define BME68X_MEM_PAGE_MSK UINT8_C(0x10)
/* Mask for reading a register in SPI */
#define BME68X_SPI_RD_MSK UINT8_C(0x80)
/* Mask for writing a register in SPI */
#define BME68X_SPI_WR_MSK UINT8_C(0x7f)
/* Mask for the H1 calibration coefficient */
#define BME68X_BIT_H1_DATA_MSK UINT8_C(0x0f)
/* Position macros */
/* Filter bit position */
#define BME68X_FILTER_POS UINT8_C(2)
/* Temperature oversampling bit position */
#define BME68X_OST_POS UINT8_C(5)
/* Pressure oversampling bit position */
#define BME68X_OSP_POS UINT8_C(2)
/* ODR[3] bit position */
#define BME68X_ODR3_POS UINT8_C(7)
/* ODR[2:0] bit position */
#define BME68X_ODR20_POS UINT8_C(5)
/* Run gas bit position */
#define BME68X_RUN_GAS_POS UINT8_C(4)
/* Heater control bit position */
#define BME68X_HCTRL_POS UINT8_C(3)
/* Macro to combine two 8 bit data's to form a 16 bit data */
#define BME68X_CONCAT_BYTES(msb, lsb) (((uint16_t)msb << 8) | (uint16_t)lsb)
/* Macro to set bits */
#define BME68X_SET_BITS(reg_data, bitname, data) \
((reg_data & ~(bitname##_MSK)) | \
((data << bitname##_POS) & bitname##_MSK))
/* Macro to get bits */
#define BME68X_GET_BITS(reg_data, bitname) ((reg_data & (bitname##_MSK)) >> \
(bitname##_POS))
/* Macro to set bits starting from position 0 */
#define BME68X_SET_BITS_POS_0(reg_data, bitname, data) \
((reg_data & ~(bitname##_MSK)) | \
(data & bitname##_MSK))
/* Macro to get bits starting from position 0 */
#define BME68X_GET_BITS_POS_0(reg_data, bitname) (reg_data & (bitname##_MSK))
/**
* BME68X_INTF_RET_TYPE is the read/write interface return type which can be overwritten by the build system.
* The default is set to int8_t.
*/
#ifndef BME68X_INTF_RET_TYPE
#define BME68X_INTF_RET_TYPE int8_t
#endif
/**
* BME68X_INTF_RET_SUCCESS is the success return value read/write interface return type which can be
* overwritten by the build system. The default is set to 0. It is used to check for a successful
* execution of the read/write functions
*/
#ifndef BME68X_INTF_RET_SUCCESS
#define BME68X_INTF_RET_SUCCESS INT8_C(0)
#endif
/********************************************************* */
/*! Function Pointers */
/********************************************************* */
/*!
* @brief Bus communication function pointer which should be mapped to
* the platform specific read functions of the user
*
* @param[in] reg_addr : 8bit register address of the sensor
* @param[out] reg_data : Data from the specified address
* @param[in] length : Length of the reg_data array
* @param[in,out] intf_ptr : Void pointer that can enable the linking of descriptors
* for interface related callbacks
* @retval 0 for Success
* @retval Non-zero for Failure
*/
typedef BME68X_INTF_RET_TYPE (*bme68x_read_fptr_t)(uint8_t reg_addr, uint8_t *reg_data, uint32_t length,
void *intf_ptr);
/*!
* @brief Bus communication function pointer which should be mapped to
* the platform specific write functions of the user
*
* @param[in] reg_addr : 8bit register address of the sensor
* @param[out] reg_data : Data to the specified address
* @param[in] length : Length of the reg_data array
* @param[in,out] intf_ptr : Void pointer that can enable the linking of descriptors
* for interface related callbacks
* @retval 0 for Success
* @retval Non-zero for Failure
*
*/
typedef BME68X_INTF_RET_TYPE (*bme68x_write_fptr_t)(uint8_t reg_addr, const uint8_t *reg_data, uint32_t length,
void *intf_ptr);
/*!
* @brief Delay function pointer which should be mapped to
* delay function of the user
*
* @param period - The time period in microseconds
* @param[in,out] intf_ptr : Void pointer that can enable the linking of descriptors
* for interface related callbacks
*/
typedef void (*bme68x_delay_us_fptr_t)(uint32_t period, void *intf_ptr);
/*
* @brief Generic communication function pointer
* @param[in] dev_id: Place holder to store the id of the device structure
* Can be used to store the index of the Chip select or
* I2C address of the device.
* @param[in] reg_addr: Used to select the register the where data needs to
* be read from or written to.
* @param[in,out] reg_data: Data array to read/write
* @param[in] len: Length of the data array
*/
/*
* @brief Interface selection Enumerations
*/
enum bme68x_intf {
/*! SPI interface */
BME68X_SPI_INTF,
/*! I2C interface */
BME68X_I2C_INTF
};
/* Structure definitions */
/*
* @brief Sensor field data structure
*/
struct bme68x_data
{
/*! Contains new_data, gasm_valid & heat_stab */
uint8_t status;
/*! The index of the heater profile used */
uint8_t gas_index;
/*! Measurement index to track order */
uint8_t meas_index;
/*! Heater resistance */
uint8_t res_heat;
/*! Current DAC */
uint8_t idac;
/*! Gas wait period */
uint8_t gas_wait;
#ifndef BME68X_USE_FPU
/*! Temperature in degree celsius x100 */
int16_t temperature;
/*! Pressure in Pascal */
uint32_t pressure;
/*! Humidity in % relative humidity x1000 */
uint32_t humidity;
/*! Gas resistance in Ohms */
uint32_t gas_resistance;
#else
/*! Temperature in degree celsius */
float temperature;
/*! Pressure in Pascal */
float pressure;
/*! Humidity in % relative humidity x1000 */
float humidity;
/*! Gas resistance in Ohms */
float gas_resistance;
#endif
};
/*
* @brief Structure to hold the calibration coefficients
*/
struct bme68x_calib_data
{
/*! Calibration coefficient for the humidity sensor */
uint16_t par_h1;
/*! Calibration coefficient for the humidity sensor */
uint16_t par_h2;
/*! Calibration coefficient for the humidity sensor */
int8_t par_h3;
/*! Calibration coefficient for the humidity sensor */
int8_t par_h4;
/*! Calibration coefficient for the humidity sensor */
int8_t par_h5;
/*! Calibration coefficient for the humidity sensor */
uint8_t par_h6;
/*! Calibration coefficient for the humidity sensor */
int8_t par_h7;
/*! Calibration coefficient for the gas sensor */
int8_t par_gh1;
/*! Calibration coefficient for the gas sensor */
int16_t par_gh2;
/*! Calibration coefficient for the gas sensor */
int8_t par_gh3;
/*! Calibration coefficient for the temperature sensor */
uint16_t par_t1;
/*! Calibration coefficient for the temperature sensor */
int16_t par_t2;
/*! Calibration coefficient for the temperature sensor */
int8_t par_t3;
/*! Calibration coefficient for the pressure sensor */
uint16_t par_p1;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p2;
/*! Calibration coefficient for the pressure sensor */
int8_t par_p3;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p4;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p5;
/*! Calibration coefficient for the pressure sensor */
int8_t par_p6;
/*! Calibration coefficient for the pressure sensor */
int8_t par_p7;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p8;
/*! Calibration coefficient for the pressure sensor */
int16_t par_p9;
/*! Calibration coefficient for the pressure sensor */
uint8_t par_p10;
#ifndef BME68X_USE_FPU
/*! Variable to store the intermediate temperature coefficient */
int32_t t_fine;
#else
/*! Variable to store the intermediate temperature coefficient */
float t_fine;
#endif
/*! Heater resistance range coefficient */
uint8_t res_heat_range;
/*! Heater resistance value coefficient */
int8_t res_heat_val;
/*! Gas resistance range switching error coefficient */
int8_t range_sw_err;
};
/*
* @brief BME68X sensor settings structure which comprises of ODR,
* over-sampling and filter settings.
*/
struct bme68x_conf
{
/*! Humidity oversampling. Refer @ref osx*/
uint8_t os_hum;
/*! Temperature oversampling. Refer @ref osx */
uint8_t os_temp;
/*! Pressure oversampling. Refer @ref osx */
uint8_t os_pres;
/*! Filter coefficient. Refer @ref filter*/
uint8_t filter;
/*!
* Standby time between sequential mode measurement profiles.
* Refer @ref odr
*/
uint8_t odr;
};
/*
* @brief BME68X gas heater configuration
*/
struct bme68x_heatr_conf
{
/*! Enable gas measurement. Refer @ref en_dis */
uint8_t enable;
/*! Store the heater temperature for forced mode degree Celsius */
uint16_t heatr_temp;
/*! Store the heating duration for forced mode in milliseconds */
uint16_t heatr_dur;
/*! Store the heater temperature profile in degree Celsius */
uint16_t *heatr_temp_prof;
/*! Store the heating duration profile in milliseconds */
uint16_t *heatr_dur_prof;
/*! Variable to store the length of the heating profile */
uint8_t profile_len;
/*!
* Variable to store heating duration for parallel mode
* in milliseconds
*/
uint16_t shared_heatr_dur;
};
/*
* @brief BME68X device structure
*/
struct bme68x_dev
{
/*! Chip Id */
uint8_t chip_id;
/*!
* The interface pointer is used to enable the user
* to link their interface descriptors for reference during the
* implementation of the read and write interfaces to the
* hardware.
*/
void *intf_ptr;
/*!
* Variant id
* ----------------------------------------
* Value | Variant
* ----------------------------------------
* 0 | BME68X_VARIANT_GAS_LOW
* 1 | BME68X_VARIANT_GAS_HIGH
* ----------------------------------------
*/
uint32_t variant_id;
/*! SPI/I2C interface */
enum bme68x_intf intf;
/*! Memory page used */
uint8_t mem_page;
/*! Ambient temperature in Degree C*/
int8_t amb_temp;
/*! Sensor calibration data */
struct bme68x_calib_data calib;
/*! Read function pointer */
bme68x_read_fptr_t read;
/*! Write function pointer */
bme68x_write_fptr_t write;
/*! Delay function pointer */
bme68x_delay_us_fptr_t delay_us;
/*! To store interface pointer error */
BME68X_INTF_RET_TYPE intf_rslt;
/*! Store the info messages */
uint8_t info_msg;
};
#endif /* BME68X_DEFS_H_ */
/*! @endcond */

View File

@@ -0,0 +1,540 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
* @file bsec_datatypes.h
*
* @brief
* Contains the data types used by BSEC
*
*/
#ifndef __BSEC_DATATYPES_H__
#define __BSEC_DATATYPES_H__
#ifdef __cplusplus
extern "C"
{
#endif
/*!
* @addtogroup bsec_datatypes BSEC Enumerations and Definitions
* @brief
* @{*/
#ifdef __KERNEL__
#include <linux/types.h>
#endif
#include <stdint.h>
#include <stddef.h>
#define BSEC_MAX_WORKBUFFER_SIZE (4096) /*!< Maximum size (in bytes) of the work buffer */
#define BSEC_MAX_PHYSICAL_SENSOR (8) /*!< Number of physical sensors that need allocated space before calling bsec_update_subscription() */
#define BSEC_MAX_PROPERTY_BLOB_SIZE (1943) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_configuration() */
#define BSEC_MAX_STATE_BLOB_SIZE (238) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_state()*/
#define BSEC_SAMPLE_RATE_DISABLED (65535.0f) /*!< Sample rate of a disabled sensor */
#define BSEC_SAMPLE_RATE_ULP (0.0033333f) /*!< Sample rate in case of Ultra Low Power Mode */
#define BSEC_SAMPLE_RATE_CONT (1.0f) /*!< Sample rate in case of Continuous Mode */
#define BSEC_SAMPLE_RATE_LP (0.33333f) /*!< Sample rate in case of Low Power Mode */
#define BSEC_SAMPLE_RATE_ULP_MEASUREMENT_ON_DEMAND (0.0f) /*!< Input value used to trigger an extra measurment (ULP plus) */
#define BSEC_SAMPLE_RATE_SCAN (0.055556f) /*!< Sample rate in case of scan mode */
#define BSEC_PROCESS_PRESSURE (1 << (BSEC_INPUT_PRESSURE-1)) /*!< process_data bitfield constant for pressure @sa bsec_bme_settings_t */
#define BSEC_PROCESS_TEMPERATURE (1 << (BSEC_INPUT_TEMPERATURE-1))/*!< process_data bitfield constant for temperature @sa bsec_bme_settings_t */
#define BSEC_PROCESS_HUMIDITY (1 << (BSEC_INPUT_HUMIDITY-1)) /*!< process_data bitfield constant for humidity @sa bsec_bme_settings_t */
#define BSEC_PROCESS_GAS (1 << (BSEC_INPUT_GASRESISTOR-1)) /*!< process_data bitfield constant for gas sensor @sa bsec_bme_settings_t */
#define BSEC_PROCESS_PROFILE_PART (1 << (BSEC_INPUT_PROFILE_PART-1)) /*!< process_data bitfield constant for gas sensor @sa bsec_bme_settings_t */
#define BSEC_NUMBER_OUTPUTS (23) /*!< Number of outputs, depending on solution */
#define BSEC_OUTPUT_INCLUDED (1072855535) /*!< bitfield that indicates which outputs are included in the solution */
/*!
* @brief Enumeration for input (physical) sensors.
*
* Used to populate bsec_input_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs
* returned in the parameter required_sensor_settings of bsec_update_subscription().
*
* @sa bsec_sensor_configuration_t @sa bsec_input_t
*/
typedef enum
{
/**
* @brief Pressure sensor output of BME68x [Pa]
*/
BSEC_INPUT_PRESSURE = 1,
/**
* @brief Humidity sensor output of BME68x [%]
*
* @note Relative humidity strongly depends on the temperature (it is measured at). It may require a conversion to
* the temperature outside of the device.
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_HUMIDITY = 2,
/**
* @brief Temperature sensor output of BME68x [degrees Celsius]
*
* @note The BME68x is factory trimmed, thus the temperature sensor of the BME68x is very accurate.
* The temperature value is a very local measurement value and can be influenced by external heat sources.
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_TEMPERATURE = 3,
/**
* @brief Gas sensor resistance output of BME68x [Ohm]
*
* The resistance value changes due to varying VOC concentrations (the higher the concentration of reducing VOCs,
* the lower the resistance and vice versa).
*/
BSEC_INPUT_GASRESISTOR = 4, /*!< */
/**
* @brief Additional input for device heat compensation
*
* IAQ solution: The value is subtracted from ::BSEC_INPUT_TEMPERATURE to compute
* ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE.
*
* ALL solution: Generic heat source 1
*
* @sa bsec_virtual_sensor_t
*/
BSEC_INPUT_HEATSOURCE = 14,
/**
* @brief Additional input that disables baseline tracker
*
* 0 - Normal,
* 1 - Event 1,
* 2 - Event 2
*/
BSEC_INPUT_DISABLE_BASELINE_TRACKER = 23,
/**
* @brief Additional input that provides information about the state of the profile (1-9)
*
*/
BSEC_INPUT_PROFILE_PART = 24
} bsec_physical_sensor_t;
/*!
* @brief Enumeration for output (virtual) sensors
*
* Used to populate bsec_output_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs
* passed in the parameter requested_virtual_sensors of bsec_update_subscription().
*
* @sa bsec_sensor_configuration_t @sa bsec_output_t
*/
typedef enum
{
/**
* @brief Indoor-air-quality estimate [0-500]
*
* Indoor-air-quality (IAQ) gives an indication of the relative change in ambient TVOCs detected by BME68x.
*
* @note The IAQ scale ranges from 0 (clean air) to 500 (heavily polluted air). During operation, algorithms
* automatically calibrate and adapt themselves to the typical environments where the sensor is operated
* (e.g., home, workplace, inside a car, etc.).This automatic background calibration ensures that users experience
* consistent IAQ performance. The calibration process considers the recent measurement history (typ. up to four
* days) to ensure that IAQ=50 corresponds to typical good air and IAQ=200 indicates typical polluted air.
*/
BSEC_OUTPUT_IAQ = 1,
BSEC_OUTPUT_STATIC_IAQ = 2, /*!< Unscaled indoor-air-quality estimate */
BSEC_OUTPUT_CO2_EQUIVALENT = 3, /*!< CO2 equivalent estimate [ppm] */
BSEC_OUTPUT_BREATH_VOC_EQUIVALENT = 4, /*!< Breath VOC concentration estimate [ppm] */
/**
* @brief Temperature sensor signal [degrees Celsius]
*
* Temperature directly measured by BME68x in degree Celsius.
*
* @note This value is cross-influenced by the sensor heating and device specific heating.
*/
BSEC_OUTPUT_RAW_TEMPERATURE = 6,
/**
* @brief Pressure sensor signal [Pa]
*
* Pressure directly measured by the BME68x in Pa.
*/
BSEC_OUTPUT_RAW_PRESSURE = 7,
/**
* @brief Relative humidity sensor signal [%]
*
* Relative humidity directly measured by the BME68x in %.
*
* @note This value is cross-influenced by the sensor heating and device specific heating.
*/
BSEC_OUTPUT_RAW_HUMIDITY = 8,
/**
* @brief Gas sensor signal [Ohm]
*
* Gas resistance measured directly by the BME68x in Ohm.The resistance value changes due to varying VOC
* concentrations (the higher the concentration of reducing VOCs, the lower the resistance and vice versa).
*/
BSEC_OUTPUT_RAW_GAS = 9,
/**
* @brief Gas sensor stabilization status [boolean]
*
* Indicates initial stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization
* is finished (1).
*/
BSEC_OUTPUT_STABILIZATION_STATUS = 12,
/**
* @brief Gas sensor run-in status [boolean]
*
* Dynamicaly tracks the power-on stabilization of the gas sensor element: stabilization is ongoing (0) or stabilization
* is finished (1). It depends on how long the sensor has been turn off. A power-on conditioning has been employed for early stabilization of BME sensors.
*/
BSEC_OUTPUT_RUN_IN_STATUS = 13,
/**
* @brief Sensor heat compensated temperature [degrees Celsius]
*
* Temperature measured by BME68x which is compensated for the influence of sensor (heater) in degree Celsius.
* The self heating introduced by the heater is depending on the sensor operation mode and the sensor supply voltage.
*
*
* @note In addition, the temperature output can be compensated by an user defined value
* (::BSEC_INPUT_HEATSOURCE in degrees Celsius), which represents the device specific self-heating.
*
* Thus, the value is calculated as follows:
* * ```BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage) - ::BSEC_INPUT_HEATSOURCE```
*
*
* The self-heating in operation mode BSEC_SAMPLE_RATE_ULP is negligible.
* The self-heating in operation mode BSEC_SAMPLE_RATE_LP is supported for 1.8V by default (no config file required). If the BME68x sensor supply voltage is 3.3V, the corresponding config file shall be used.
*/
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = 14,
/**
* @brief Sensor heat compensated humidity [%]
*
* Relative humidity measured by BME68x which is compensated for the influence of sensor (heater) in %.
*
* It converts the ::BSEC_INPUT_HUMIDITY from temperature ::BSEC_INPUT_TEMPERATURE to temperature
* ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE.
*
* @note If ::BSEC_INPUT_HEATSOURCE is used for device specific temperature compensation, it will be
* effective for ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY too.
*/
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY = 15,
/**
* @brief Raw gas resistance compensated by temperature and humidity influences [ohm].
*
* The effect of temperature and humidity on the gas resistance is eleminated to a good extend and it is further linearized
* to log scale for estimation of the compensated gas resistance.
*
*/
BSEC_OUTPUT_COMPENSATED_GAS = 18,
BSEC_OUTPUT_GAS_PERCENTAGE = 21, /*!< Percentage of min and max filtered gas value [%] */
/**
* @brief Gas estimate output channel 1 [0-1]
*
* The gas scan result is given in probability for each of the used gases.
* In standard scan mode, the probability of H2S and non-H2S is provided by the variables BSEC_OUTPUT_GAS_ESTIMATE_1 & BSEC_OUTPUT_GAS_ESTIMATE_2 respectively. A maximum of 4 classes can be used by configuring using BME AI-studio.
*/
BSEC_OUTPUT_GAS_ESTIMATE_1 = 22,
BSEC_OUTPUT_GAS_ESTIMATE_2 = 23, /*!< Gas estimate output channel 2 [0-1] */
BSEC_OUTPUT_GAS_ESTIMATE_3 = 24, /*!< Gas estimate output channel 3 [0-1] */
BSEC_OUTPUT_GAS_ESTIMATE_4 = 25, /*!< Gas estimate output channel 4 [0-1] */
BSEC_OUTPUT_RAW_GAS_INDEX = 26, /*!< Gas index cyclically running from 0 to heater_profile_length-1, range of heater profile length is from 1 to 10, default being 10 */
/**
* @brief Regression estimate output channel 1
*
* The regression estimate gives the quantitative measurement of the gases used.
* In standard scan mode, quantification of the gas is provided by the variables BSEC_OUTPUT_REGRESSION_ESTIMATE_1. A maximum of 4 gas targets can be used by configuring using BME AI-studio.
*/
BSEC_OUTPUT_REGRESSION_ESTIMATE_1 = 27,
BSEC_OUTPUT_REGRESSION_ESTIMATE_2 = 28, /*!< Regression estimate output channel 2 */
BSEC_OUTPUT_REGRESSION_ESTIMATE_3 = 29, /*!< Regression estimate output channel 3 */
BSEC_OUTPUT_REGRESSION_ESTIMATE_4 = 30 /*!< Regression estimate output channel 4 */
} bsec_virtual_sensor_t;
/*!
* @brief Enumeration for function return codes
*/
typedef enum
{
BSEC_OK = 0, /*!< Function execution successful */
BSEC_E_DOSTEPS_INVALIDINPUT = -1, /*!< Input (physical) sensor id passed to bsec_do_steps() is not in the valid range or not valid for requested virtual sensor */
BSEC_E_DOSTEPS_VALUELIMITS = -2, /*!< Value of input (physical) sensor signal passed to bsec_do_steps() is not in the valid range */
BSEC_W_DOSTEPS_TSINTRADIFFOUTOFRANGE = 4, /*!< Past timestamps passed to bsec_do_steps() */
BSEC_E_DOSTEPS_DUPLICATEINPUT = -6, /*!< Duplicate input (physical) sensor ids passed as input to bsec_do_steps() */
BSEC_I_DOSTEPS_NOOUTPUTSRETURNABLE = 2, /*!< No memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs == 0 */
BSEC_W_DOSTEPS_EXCESSOUTPUTS = 3, /*!< Not enough memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs < maximum number of requested output (virtual) sensors */
BSEC_W_DOSTEPS_GASINDEXMISS = 5, /*!< Gas index not provided to bsec_do_steps() */
BSEC_E_SU_WRONGDATARATE = -10, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is zero */
BSEC_E_SU_SAMPLERATELIMITS = -12, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not match with the sampling rate allowed for that sensor */
BSEC_E_SU_DUPLICATEGATE = -13, /*!< Duplicate output (virtual) sensor ids requested through bsec_update_subscription() */
BSEC_E_SU_INVALIDSAMPLERATE = -14, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not fall within the global minimum and maximum sampling rates */
BSEC_E_SU_GATECOUNTEXCEEDSARRAY = -15, /*!< Not enough memory allocated to hold returned input (physical) sensor data from bsec_update_subscription(), i.e., n_required_sensor_settings ::BSEC_MAX_PHYSICAL_SENSOR */
BSEC_E_SU_SAMPLINTVLINTEGERMULT = -16, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is not correct */
BSEC_E_SU_MULTGASSAMPLINTVL = -17, /*!< The sample_rate of the requested output (virtual), which requires the gas sensor, is not equal to the sample_rate that the gas sensor is being operated */
BSEC_E_SU_HIGHHEATERONDURATION = -18, /*!< The duration of one measurement is longer than the requested sampling interval */
BSEC_W_SU_UNKNOWNOUTPUTGATE = 10, /*!< Output (virtual) sensor id passed to bsec_update_subscription() is not in the valid range; e.g., n_requested_virtual_sensors > actual number of output (virtual) sensors requested */
BSEC_W_SU_MODINNOULP = 11, /*!< ULP plus can not be requested in non-ulp mode */ /*MOD_ONLY*/
BSEC_I_SU_SUBSCRIBEDOUTPUTGATES = 12, /*!< No output (virtual) sensor data were requested via bsec_update_subscription() */
BSEC_I_SU_GASESTIMATEPRECEDENCE = 13, /*!< GAS_ESTIMATE is suscribed and take precedence over other requested outputs */
BSEC_W_SU_SAMPLERATEMISMATCH = 14, /*!< Subscriped sample rate of the output is not matching with configured sample rate. For example if user used the configuration of ULP and outputs subscribed for LP mode this warning will inform the user about this mismatch*/
BSEC_E_PARSE_SECTIONEXCEEDSWORKBUFFER = -32, /*!< n_work_buffer_size passed to bsec_set_[configuration/state]() not sufficient */
BSEC_E_CONFIG_FAIL = -33, /*!< Configuration failed */
BSEC_E_CONFIG_VERSIONMISMATCH = -34, /*!< Version encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current version */
BSEC_E_CONFIG_FEATUREMISMATCH = -35, /*!< Enabled features encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current library implementation or subscribed outputs*/
BSEC_E_CONFIG_CRCMISMATCH = -36, /*!< serialized_[settings/state] passed to bsec_set_[configuration/state]() is corrupted */
BSEC_E_CONFIG_EMPTY = -37, /*!< n_serialized_[settings/state] passed to bsec_set_[configuration/state]() is to short to be valid */
BSEC_E_CONFIG_INSUFFICIENTWORKBUFFER = -38, /*!< Provided work_buffer is not large enough to hold the desired string */
BSEC_E_CONFIG_INVALIDSTRINGSIZE = -40, /*!< String size encoded in configuration/state strings passed to bsec_set_[configuration/state]() does not match with the actual string size n_serialized_[settings/state] passed to these functions */
BSEC_E_CONFIG_INSUFFICIENTBUFFER = -41, /*!< String buffer insufficient to hold serialized data from BSEC library */
BSEC_E_SET_INVALIDCHANNELIDENTIFIER = -100, /*!< Internal error code, size of work buffer in setConfig must be set to #BSEC_MAX_WORKBUFFER_SIZE */
BSEC_E_SET_INVALIDLENGTH = -104, /*!< Internal error code */
BSEC_W_SC_CALL_TIMING_VIOLATION = 100, /*!< Difference between actual and defined sampling intervals of bsec_sensor_control() greater than allowed */
BSEC_W_SC_MODEXCEEDULPTIMELIMIT = 101, /*!< ULP plus is not allowed because an ULP measurement just took or will take place */ /*MOD_ONLY*/
BSEC_W_SC_MODINSUFFICIENTWAITTIME = 102 /*!< ULP plus is not allowed because not sufficient time passed since last ULP plus */ /*MOD_ONLY*/
} bsec_library_return_t;
/*!
* @brief Structure containing the version information
*
* Please note that configuration and state strings are coded to a specific version and will not be accepted by other
* versions of BSEC.
*
*/
typedef struct
{
uint8_t major; /**< @brief Major version */
uint8_t minor; /**< @brief Minor version */
uint8_t major_bugfix; /**< @brief Major bug fix version */
uint8_t minor_bugfix; /**< @brief Minor bug fix version */
} bsec_version_t;
/*!
* @brief Structure describing an input sample to the library
*
* Each input sample is provided to BSEC as an element in a struct array of this type. Timestamps must be provided
* in nanosecond resolution. Moreover, duplicate timestamps for subsequent samples are not allowed and will results in
* an error code being returned from bsec_do_steps().
*
* The meaning unit of the signal field are determined by the bsec_input_t::sensor_id field content. Possible
* bsec_input_t::sensor_id values and and their meaning are described in ::bsec_physical_sensor_t.
*
* @sa bsec_physical_sensor_t
*
*/
typedef struct
{
/**
* @brief Time stamp in nanosecond resolution [ns]
*
* Timestamps must be provided as non-repeating and increasing values. They can have their 0-points at system start or
* at a defined wall-clock time (e.g., 01-Jan-1970 00:00:00)
*/
int64_t time_stamp;
float signal; /*!< @brief Signal sample in the unit defined for the respective sensor_id @sa bsec_physical_sensor_t */
uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */
uint8_t sensor_id; /*!< @brief Identifier of physical sensor @sa bsec_physical_sensor_t */
} bsec_input_t;
/*!
* @brief Structure describing an output sample of the library
*
* Each output sample is returned from BSEC by populating the element of a struct array of this type. The contents of
* the signal field is defined by the supplied bsec_output_t::sensor_id. Possible output
* bsec_output_t::sensor_id values are defined in ::bsec_virtual_sensor_t.
*
* @sa bsec_virtual_sensor_t
*/
typedef struct
{
int64_t time_stamp; /*!< @brief Time stamp in nanosecond resolution as provided as input [ns] */
float signal; /*!< @brief Signal sample in the unit defined for the respective bsec_output_t::sensor_id @sa bsec_virtual_sensor_t */
uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */
uint8_t sensor_id; /*!< @brief Identifier of virtual sensor @sa bsec_virtual_sensor_t */
/**
* @brief Accuracy status 0-3
*
* Some virtual sensors provide a value in the accuracy field. If this is the case, the meaning of the field is as
* follows:
*
* | Name | Value | Accuracy description |
* |----------------------------|-------|-------------------------------------------------------------------------------------------------------------|
* | UNRELIABLE | 0 | Sensor data is unreliable, the sensor must be calibrated |
* | LOW_ACCURACY | 1 | Reliability of virtual sensor is low, sensor should be calibrated |
* | MEDIUM_ACCURACY | 2 | Medium reliability, sensor calibration or training may improve performance |
* | HIGH_ACCURACY | 3 | High reliability |
*
* For example:
*
* - IAQ accuracy indicator will notify the user when she/he should initiate a calibration process. Calibration is
* performed automatically in the background if the sensor is exposed to clean and polluted air for approximately
* 30 minutes each.
*
* | Virtual sensor | Value | Accuracy description |
* |----------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
* | IAQ | 0 | Stabilization / run-in ongoing |
* | | 1 | Low accuracy,to reach high accuracy(3),please expose sensor once to good air (e.g. outdoor air) and bad air (e.g. box with exhaled breath) for auto-trimming |
* | | 2 | Medium accuracy: auto-trimming ongoing |
* | | 3 | High accuracy
*
* - Gas estimator accuracy indicator will notify the user when she/he gets valid gas prediction output.
*
* | Virtual sensor | Value | Accuracy description |
* |----------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
* | GAS_ESTIMATE_x* | 0 | No valid gas estimate found - BSEC collecting gas features |
* | | 3 | Gas estimate prediction available |
*
* <sup>*</sup> GAS_ESTIMATE_1, GAS_ESTIMATE_2, GAS_ESTIMATE_3, GAS_ESTIMATE_4
* - Regression estimate accuracy will notify the user when she/he gets valid regression estimate output.
*
* | Virtual sensor | Value | Accuracy description |
* |----------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
* | REGRESSION_ESTIMATE_x* | 0 | No valid regression estimate output found - BSEC collecting gas features |
* | | 2 | Predicted regression estimate output is not within the value of the label present in the training data |
* | | 3 | Predicted regression estimate output is within the the value of the label present in the training data |
*
* <sup>*</sup> REGRESSION_ESTIMATE_1, REGRESSION_ESTIMATE_2, REGRESSION_ESTIMATE_3, REGRESSION_ESTIMATE_4
*/
uint8_t accuracy;
} bsec_output_t;
/*!
* @brief Structure describing sample rate of physical/virtual sensors
*
* This structure is used together with bsec_update_subscription() to enable BSEC outputs and to retrieve information
* about the sample rates used for BSEC inputs.
*/
typedef struct
{
/**
* @brief Sample rate of the virtual or physical sensor in Hertz [Hz]
*
* Only supported sample rates are allowed.
*/
float sample_rate;
/**
* @brief Identifier of the virtual or physical sensor
*
* The meaning of this field changes depending on whether the structs are as the requested_virtual_sensors argument
* to bsec_update_subscription() or as the required_sensor_settings argument.
*
* | bsec_update_subscription() argument | sensor_id field interpretation |
* |-------------------------------------|--------------------------------|
* | requested_virtual_sensors | ::bsec_virtual_sensor_t |
* | required_sensor_settings | ::bsec_physical_sensor_t |
*
* @sa bsec_physical_sensor_t
* @sa bsec_virtual_sensor_t
*/
uint8_t sensor_id;
} bsec_sensor_configuration_t;
/*!
* @brief Structure returned by bsec_sensor_control() to configure BME68x sensor
*
* This structure contains settings that must be used to configure the BME68x to perform a forced-mode measurement.
* A measurement should only be executed if bsec_bme_settings_t::trigger_measurement is 1. If so, the oversampling
* settings for temperature, humidity, and pressure should be set to the provided settings provided in
* bsec_bme_settings_t::temperature_oversampling, bsec_bme_settings_t::humidity_oversampling, and
* bsec_bme_settings_t::pressure_oversampling, respectively.
*
* In case of bsec_bme_settings_t::run_gas = 1, the gas sensor must be enabled with the provided
* bsec_bme_settings_t::heater_temperature and bsec_bme_settings_t::heating_duration settings.
*/
typedef struct
{
int64_t next_call; /*!< @brief Time stamp of the next call of the sensor_control*/
uint32_t process_data; /*!< @brief Bit field describing which data is to be passed to bsec_do_steps() @sa BSEC_PROCESS_GAS, BSEC_PROCESS_TEMPERATURE, BSEC_PROCESS_HUMIDITY, BSEC_PROCESS_PRESSURE */
uint16_t heater_temperature; /*!< @brief Heater temperature [degrees Celsius] */
uint16_t heater_duration; /*!< @brief Heater duration [ms] */
uint16_t heater_temperature_profile[10];/*!< @brief Heater temperature profile [degrees Celsius] */
uint16_t heater_duration_profile[10]; /*!< @brief Heater duration profile [ms] */
uint8_t heater_profile_len; /*!< @brief Heater profile length [0-10] */
uint8_t run_gas; /*!< @brief Enable gas measurements [0/1] */
uint8_t pressure_oversampling; /*!< @brief Pressure oversampling settings [0-5] */
uint8_t temperature_oversampling; /*!< @brief Temperature oversampling settings [0-5] */
uint8_t humidity_oversampling; /*!< @brief Humidity oversampling settings [0-5] */
uint8_t trigger_measurement; /*!< @brief Trigger a forced measurement with these settings now [0/1] */
uint8_t op_mode; /*!< @brief Sensor operation mode [0/1] */
} bsec_bme_settings_t;
/* internal defines and backward compatibility */
#define BSEC_STRUCT_NAME Bsec /*!< Internal struct name */
/*@}*/
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,762 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
*/
/*!
* @file bsec_integration.c
*
* @brief
* Private part of the example for using of BSEC library.
*/
/*!
* @addtogroup bsec_examples BSEC Examples
* @brief BSEC usage examples
* @{*/
/**********************************************************************************************************************/
/* header files */
/**********************************************************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "bsec_integration.h"
/**********************************************************************************************************************/
/* local macro definitions */
/**********************************************************************************************************************/
#if (OUTPUT_MODE == CLASSIFICATION || OUTPUT_MODE == REGRESSION)
#define NUM_USED_OUTPUTS 9
#elif (OUTPUT_MODE == IAQ)
#define NUM_USED_OUTPUTS 14
#endif
/**********************************************************************************************************************/
/* global variable declarations */
/**********************************************************************************************************************/
/* Global sensor APIs data structure */
static struct bme68x_dev bme68x_g[NUM_OF_SENS] = {};
static struct bme68x_conf conf;
static struct bme68x_heatr_conf heatr_conf;
static struct bme68x_data sensor_data[3];
uint8_t dev_addr = BME68X_I2C_ADDR_LOW;
/* State change and temporary data place holders */
uint8_t lastOpMode[NUM_OF_SENS] = { BME68X_SLEEP_MODE, BME68X_SLEEP_MODE, BME68X_SLEEP_MODE, BME68X_SLEEP_MODE,
BME68X_SLEEP_MODE, BME68X_SLEEP_MODE, BME68X_SLEEP_MODE, BME68X_SLEEP_MODE };
float extTempOffset = 0.0f;
uint8_t opMode[NUM_OF_SENS];
uint8_t nFields, iFields;
/**********************************************************************************************************************/
/* functions */
/**********************************************************************************************************************/
/*!
* @brief Virtual sensor subscription
* Please call this function before processing of data using bsec_do_steps function
*
* @param[in] sample_rate mode to be used (either BSEC_SAMPLE_RATE_ULP or BSEC_SAMPLE_RATE_LP)
*
* @return subscription result, zero when successful
*/
static bsec_library_return_t bme68x_bsec_update_subscription(float sample_rate, uint8_t sens_no)
{
bsec_sensor_configuration_t requested_virtual_sensors[NUM_USED_OUTPUTS];
uint8_t n_requested_virtual_sensors = NUM_USED_OUTPUTS;
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
bsec_library_return_t status = BSEC_OK;
/* note: Virtual sensors as desired to be added here */
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
requested_virtual_sensors[0].sample_rate = sample_rate;
requested_virtual_sensors[1].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE;
requested_virtual_sensors[1].sample_rate = sample_rate;
requested_virtual_sensors[2].sensor_id = BSEC_OUTPUT_RAW_HUMIDITY;
requested_virtual_sensors[2].sample_rate = sample_rate;
requested_virtual_sensors[3].sensor_id = BSEC_OUTPUT_RAW_GAS;
requested_virtual_sensors[3].sample_rate = sample_rate;
#if (OUTPUT_MODE == CLASSIFICATION)
requested_virtual_sensors[4].sensor_id = BSEC_OUTPUT_GAS_ESTIMATE_1;
requested_virtual_sensors[4].sample_rate = sample_rate;
requested_virtual_sensors[5].sensor_id = BSEC_OUTPUT_GAS_ESTIMATE_2;
requested_virtual_sensors[5].sample_rate = sample_rate;
requested_virtual_sensors[6].sensor_id = BSEC_OUTPUT_GAS_ESTIMATE_3;
requested_virtual_sensors[6].sample_rate = sample_rate;
requested_virtual_sensors[7].sensor_id = BSEC_OUTPUT_GAS_ESTIMATE_4;
requested_virtual_sensors[7].sample_rate = sample_rate;
requested_virtual_sensors[8].sensor_id = BSEC_OUTPUT_RAW_GAS_INDEX;
requested_virtual_sensors[8].sample_rate = sample_rate;
#elif (OUTPUT_MODE == REGRESSION)
requested_virtual_sensors[4].sensor_id = BSEC_OUTPUT_REGRESSION_ESTIMATE_1;
requested_virtual_sensors[4].sample_rate = sample_rate;
requested_virtual_sensors[5].sensor_id = BSEC_OUTPUT_REGRESSION_ESTIMATE_2;
requested_virtual_sensors[5].sample_rate = sample_rate;
requested_virtual_sensors[6].sensor_id = BSEC_OUTPUT_REGRESSION_ESTIMATE_3;
requested_virtual_sensors[6].sample_rate = sample_rate;
requested_virtual_sensors[7].sensor_id = BSEC_OUTPUT_REGRESSION_ESTIMATE_4;
requested_virtual_sensors[7].sample_rate = sample_rate;
requested_virtual_sensors[8].sensor_id = BSEC_OUTPUT_RAW_GAS_INDEX;
requested_virtual_sensors[8].sample_rate = sample_rate;
#elif (OUTPUT_MODE == IAQ)
requested_virtual_sensors[4].sensor_id = BSEC_OUTPUT_IAQ;
requested_virtual_sensors[4].sample_rate = sample_rate;
requested_virtual_sensors[5].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE;
requested_virtual_sensors[5].sample_rate = sample_rate;
requested_virtual_sensors[6].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY;
requested_virtual_sensors[6].sample_rate = sample_rate;
requested_virtual_sensors[7].sensor_id = BSEC_OUTPUT_STATIC_IAQ;
requested_virtual_sensors[7].sample_rate = sample_rate;
requested_virtual_sensors[8].sensor_id = BSEC_OUTPUT_CO2_EQUIVALENT;
requested_virtual_sensors[8].sample_rate = sample_rate;
requested_virtual_sensors[9].sensor_id = BSEC_OUTPUT_BREATH_VOC_EQUIVALENT;
requested_virtual_sensors[9].sample_rate = sample_rate;
requested_virtual_sensors[10].sensor_id = BSEC_OUTPUT_STABILIZATION_STATUS;
requested_virtual_sensors[10].sample_rate = sample_rate;
requested_virtual_sensors[11].sensor_id = BSEC_OUTPUT_RUN_IN_STATUS;
requested_virtual_sensors[11].sample_rate = sample_rate;
requested_virtual_sensors[12].sensor_id = BSEC_OUTPUT_GAS_PERCENTAGE;
requested_virtual_sensors[12].sample_rate = sample_rate;
requested_virtual_sensors[13].sensor_id = BSEC_OUTPUT_COMPENSATED_GAS;
requested_virtual_sensors[13].sample_rate = sample_rate;
#endif
/* Call bsec_update_subscription() to enable/disable the requested virtual sensors */
status = bsec_update_subscription_m(bsecInstance[sens_no], requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings,
&n_required_sensor_settings);
return status;
}
/*!
* @brief Initialize the bme68x sensor and the BSEC library
*
* @param[in] sample_rate mode to be used (either BSEC_SAMPLE_RATE_ULP or BSEC_SAMPLE_RATE_LP)
* @param[in] temperature_offset device-specific temperature offset (due to self-heating)
* @param[in] bus_write pointer to the bus writing function
* @param[in] bus_read pointer to the bus reading function
* @param[in] sleep pointer to the system specific sleep function
* @param[in] state_load pointer to the system-specific state load function
* @param[in] config_load pointer to the system-specific config load function
* @param[in] dev pointer to the sensor communication and inventory details strucuture
*
* @return zero if successful, negative otherwise
*/
return_values_init bsec_iot_init(float sample_rate, float temperature_offset, bme68x_write_fptr_t bus_write,
bme68x_read_fptr_t bus_read, sleep_fct sleep, state_load_fct state_load, config_load_fct config_load, struct bme68x_dev dev, uint8_t sens_no)
{
return_values_init ret = {BME68X_OK, BSEC_OK};
uint8_t bsec_state[BSEC_MAX_STATE_BLOB_SIZE] = {0};
uint8_t bsec_config[BSEC_MAX_PROPERTY_BLOB_SIZE] = {0};
uint8_t work_buffer[BSEC_MAX_WORKBUFFER_SIZE] = {0};
int32_t bsec_state_len, bsec_config_len;
bme68x_g[sens_no] = dev;
/* Initialize bme68x API */
ret.bme68x_status = bme68x_init(&bme68x_g[sens_no]);
if (ret.bme68x_status != BME68X_OK)
{
return ret;
}
/* Initialize BSEC library */
ret.bsec_status = bsec_init_m(bsecInstance[sens_no]);
if (ret.bsec_status != BSEC_OK)
{
return ret;
}
/* Load library config, if available */
bsec_config_len = config_load(bsec_config, sizeof(bsec_config));
if (bsec_config_len != 0)
{
ret.bsec_status = bsec_set_configuration_m(bsecInstance[sens_no], bsec_config, bsec_config_len, work_buffer, sizeof(work_buffer));
if (ret.bsec_status != BSEC_OK)
{
return ret;
}
}
/* Load previous library state, if available */
bsec_state_len = state_load(bsec_state, sizeof(bsec_state));
if (bsec_state_len != 0)
{
ret.bsec_status = bsec_set_state_m(bsecInstance[sens_no], bsec_state, bsec_state_len, work_buffer, sizeof(work_buffer));
if (ret.bsec_status != BSEC_OK)
{
return ret;
}
}
/*
* The default offset provided has been determined by testing the sensor in LP and ULP mode on application board 3.0
* Please update the offset value after testing this on your product
*/
if (sample_rate == BSEC_SAMPLE_RATE_ULP)
{
extTempOffset = TEMP_OFFSET_ULP;
}
else if (sample_rate == BSEC_SAMPLE_RATE_LP)
{
extTempOffset = TEMP_OFFSET_LP;
}
/* Call to the function which sets the library with subscription information */
ret.bsec_status = bme68x_bsec_update_subscription(sample_rate, sens_no);
if (ret.bsec_status != BSEC_OK)
{
return ret;
}
return ret;
}
/*!
* @brief This function is written to process the sensor data for the requested virtual sensors
*
* @param[in] bsec_inputs input structure containing the information on sensors to be passed to do_steps
* @param[in] num_bsec_inputs number of inputs to be passed to do_steps
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
*
* @return library function return codes, zero when successful
*/
static bsec_library_return_t bme68x_bsec_process_data(bsec_input_t *bsec_inputs, uint8_t num_bsec_inputs, output_ready_fct output_ready, uint8_t sens_no)
{
/* Output buffer set to the maximum virtual sensor outputs supported */
bsec_output_t bsec_outputs[BSEC_NUMBER_OUTPUTS];
uint8_t num_bsec_outputs = 0;
uint8_t index = 0;
bsec_library_return_t bsec_status = BSEC_OK;
output_t output = {0};
/* Check if something should be processed by BSEC */
if (num_bsec_inputs > 0)
{
/* Set number of outputs to the size of the allocated buffer */
/* BSEC_NUMBER_OUTPUTS to be defined */
num_bsec_outputs = BSEC_NUMBER_OUTPUTS;
/* Perform processing of the data by BSEC
Note:
* The number of outputs you get depends on what you asked for during bsec_update_subscription(). This is
handled under bme68x_bsec_update_subscription() function in this example file.
* The number of actual outputs that are returned is written to num_bsec_outputs. */
bsec_status = bsec_do_steps_m(bsecInstance[sens_no], bsec_inputs, num_bsec_inputs, bsec_outputs, &num_bsec_outputs);
/* Iterate through the outputs and extract the relevant ones. */
for (index = 0; index < num_bsec_outputs; index++)
{
switch (bsec_outputs[index].sensor_id)
{
case BSEC_OUTPUT_GAS_ESTIMATE_1:
output.gas_estimate_1 = bsec_outputs[index].signal;
output.gas_accuracy_1 = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_GAS_ESTIMATE_2:
output.gas_estimate_2 = bsec_outputs[index].signal;
output.gas_accuracy_2 = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_GAS_ESTIMATE_3:
output.gas_estimate_3 = bsec_outputs[index].signal;
output.gas_accuracy_3 = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_GAS_ESTIMATE_4:
output.gas_estimate_4 = bsec_outputs[index].signal;
output.gas_accuracy_4 = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_RAW_PRESSURE:
output.raw_pressure = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RAW_TEMPERATURE:
output.raw_temp = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RAW_HUMIDITY:
output.raw_humidity = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RAW_GAS:
output.raw_gas = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RAW_GAS_INDEX:
output.raw_gas_index = (uint8_t)bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_REGRESSION_ESTIMATE_1:
output.gas_estimate_1 = bsec_outputs[index].signal;
output.gas_accuracy_1 = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_REGRESSION_ESTIMATE_2:
output.gas_estimate_2 = bsec_outputs[index].signal;
output.gas_accuracy_2 = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_REGRESSION_ESTIMATE_3:
output.gas_estimate_3 = bsec_outputs[index].signal;
output.gas_accuracy_3 = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_REGRESSION_ESTIMATE_4:
output.gas_estimate_4 = bsec_outputs[index].signal;
output.gas_accuracy_4 = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_IAQ:
output.iaq = bsec_outputs[index].signal;
output.iaq_accuracy = bsec_outputs[index].accuracy;
break;
case BSEC_OUTPUT_STATIC_IAQ:
output.static_iaq = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_CO2_EQUIVALENT:
output.co2_equivalent = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
output.breath_voc_equivalent = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
output.temperature = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
output.humidity = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_STABILIZATION_STATUS:
output.stabStatus = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_RUN_IN_STATUS:
output.runInStatus = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_GAS_PERCENTAGE:
output.gas_percentage = bsec_outputs[index].signal;
break;
case BSEC_OUTPUT_COMPENSATED_GAS:
output.compensated_gas = bsec_outputs[index].signal;
break;
default:
continue;
}
/* Assume that all the returned timestamps are the same */
output.timestamp = bsec_outputs[index].time_stamp;
}
output.sens_no = sens_no;
/* Pass the extracted outputs to the user provided output_ready() function. */
if (num_bsec_outputs != 0)
output_ready(&output, bsec_status);
}
return bsec_status;
}
/*!
* @brief Read the data from registers and populate the inputs structure to be passed to do_steps function
*
* @param[in] currTimeNs system timestamp value passed for processing data
* @param[in] data input structure that contains the gas sensor data to be passed to process data
* @param[in] bsec_process_data process data variable returned from sensor_control
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
*
* @return function result, one when successful & zero when unsuccessful
*/
uint8_t processData(int64_t currTimeNs, struct bme68x_data data, int32_t bsec_process_data, output_ready_fct output_ready, uint8_t sens_no)
{
bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR]; /* Temp, Pres, Hum & Gas */
bsec_library_return_t bsec_status = BSEC_OK;
uint8_t nInputs = 0;
/* Checks all the required sensor inputs, required for the BSEC library for the requested outputs */
if (BSEC_CHECK_INPUT(bsec_process_data, BSEC_INPUT_HEATSOURCE))
{
inputs[nInputs].sensor_id = BSEC_INPUT_HEATSOURCE;
inputs[nInputs].signal = extTempOffset;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(bsec_process_data, BSEC_INPUT_TEMPERATURE))
{
#ifdef BME68X_USE_FPU
inputs[nInputs].sensor_id = BSEC_INPUT_TEMPERATURE;
#else
inputs[nInputs].sensor_id = BSEC_INPUT_TEMPERATURE / 100.0f;
#endif
inputs[nInputs].signal = data.temperature;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(bsec_process_data, BSEC_INPUT_HUMIDITY))
{
#ifdef BME68X_USE_FPU
inputs[nInputs].sensor_id = BSEC_INPUT_HUMIDITY;
#else
inputs[nInputs].sensor_id = BSEC_INPUT_HUMIDITY / 1000.0f;
#endif
inputs[nInputs].signal = data.humidity;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(bsec_process_data, BSEC_INPUT_PRESSURE))
{
inputs[nInputs].sensor_id = BSEC_INPUT_PRESSURE;
inputs[nInputs].signal = data.pressure;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(bsec_process_data, BSEC_INPUT_GASRESISTOR) &&
(data.status & BME68X_GASM_VALID_MSK))
{
inputs[nInputs].sensor_id = BSEC_INPUT_GASRESISTOR;
inputs[nInputs].signal = data.gas_resistance;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (BSEC_CHECK_INPUT(bsec_process_data, BSEC_INPUT_PROFILE_PART) &&
(data.status & BME68X_GASM_VALID_MSK))
{
inputs[nInputs].sensor_id = BSEC_INPUT_PROFILE_PART;
inputs[nInputs].signal = (opMode[sens_no] == BME68X_FORCED_MODE) ? 0 : data.gas_index;
inputs[nInputs].time_stamp = currTimeNs;
nInputs++;
}
if (nInputs > 0)
{
/* Processing of the input signals and returning of output samples is performed by bsec_do_steps() */
bsec_status = bme68x_bsec_process_data(inputs, nInputs, output_ready, sens_no);
if (bsec_status != BSEC_OK)
return 0;
}
return 1;
}
/*!
* @brief Function to get the measurement duration in microseconds
*
* @param[in] mode sensor operation mode to calculate the shared heater duration
*
* @return calculated duration
*/
uint32_t getMeasDur(uint8_t mode, uint8_t sens_no)
{
if (mode == BME68X_SLEEP_MODE)
mode = lastOpMode[sens_no];
return bme68x_get_meas_dur(mode, &conf, &bme68x_g[sens_no]);
}
/**
* @brief Set the BME68X sensor configuration to parallel mode
*
* @param[in] sensor_settings settings of the bme68x sensor adopted by sensor control function
*
* @return none
*/
void setBme68xConfigParallel(bsec_bme_settings_t *sensor_settings, uint8_t sens_no)
{
uint16_t sharedHeaterDur = 0;
int8_t status;
/* Set the filter, odr, temperature, pressure and humidity settings */
status = bme68x_get_conf(&conf, &bme68x_g[sens_no]);
if (status != BME68X_OK)
return;
conf.os_hum = sensor_settings->humidity_oversampling;
conf.os_temp = sensor_settings->temperature_oversampling;
conf.os_pres = sensor_settings->pressure_oversampling;
status = bme68x_set_conf(&conf, &bme68x_g[sens_no]);
if (status != BME68X_OK)
return;
sharedHeaterDur = BSEC_TOTAL_HEAT_DUR - (getMeasDur(BME68X_PARALLEL_MODE, sens_no) / INT64_C(1000));
heatr_conf.enable = BME68X_ENABLE;
heatr_conf.heatr_temp_prof = sensor_settings->heater_temperature_profile;
heatr_conf.heatr_dur_prof = sensor_settings->heater_duration_profile;
heatr_conf.shared_heatr_dur = sharedHeaterDur;
heatr_conf.profile_len = sensor_settings->heater_profile_len;
status = bme68x_set_heatr_conf(BME68X_PARALLEL_MODE, &heatr_conf, &bme68x_g[sens_no]);
if (status != BME68X_OK)
return;
status = bme68x_set_op_mode(BME68X_PARALLEL_MODE, &bme68x_g[sens_no]);
if (status != BME68X_OK)
return;
lastOpMode[sens_no] = BME68X_PARALLEL_MODE;
opMode[sens_no] = BME68X_PARALLEL_MODE;
}
/**
* @brief Set the BME68X sensor configuration to forced mode
*
* @param[in] sensor_settings settings of the bme68x sensor adopted by sensor control function
*
* @return none
*/
void setBme68xConfigForced(bsec_bme_settings_t *sensor_settings, uint8_t sens_no)
{
int8_t status;
/* Set the filter, odr, temperature, pressure and humidity settings */
status = bme68x_get_conf(&conf, &bme68x_g[sens_no]);
if (status != BME68X_OK)
return;
conf.os_hum = sensor_settings->humidity_oversampling;
conf.os_temp = sensor_settings->temperature_oversampling;
conf.os_pres = sensor_settings->pressure_oversampling;
status = bme68x_set_conf(&conf, &bme68x_g[sens_no]);
if (status != BME68X_OK)
return;
heatr_conf.enable = BME68X_ENABLE;
heatr_conf.heatr_temp = sensor_settings->heater_temperature;
heatr_conf.heatr_dur = sensor_settings->heater_duration;
status = bme68x_set_heatr_conf(BME68X_FORCED_MODE, &heatr_conf, &bme68x_g[sens_no]);
if (status != BME68X_OK)
return;
status = bme68x_set_op_mode(BME68X_FORCED_MODE, &bme68x_g[sens_no]);
if (status != BME68X_OK)
return;
lastOpMode[sens_no] = BME68X_FORCED_MODE;
opMode[sens_no] = BME68X_FORCED_MODE;
}
/**
* @brief Function to get a single data field
*/
/*!
* @brief Function to get a single data field
*
* @param[in] currTimeNs system timestamp value passed for processing data
* @param[in] data input structure that contains the gas sensor raw data collected
*
* @return number of fields to process, zero when nothing to process
*/
uint8_t getData(struct bme68x_data *data, uint8_t sens_no)
{
if (lastOpMode[sens_no] == BME68X_FORCED_MODE)
{
*data = sensor_data[0];
} else
{
if (nFields)
{
/* iFields spans from 0-2 while nFields spans from
* 0-3, where 0 means that there is no new data
*/
*data = sensor_data[iFields];
iFields++;
/* Limit reading continuously to the last fields read */
if (iFields >= nFields)
{
iFields = nFields - 1;
return 0;
}
/* Indicate if there is something left to read */
return nFields - iFields;
}
}
return 0;
}
/*!
* @brief Runs the main (endless) loop that queries sensor settings, applies them, and processes the measured data
*
* @param[in] sleep pointer to the system specific sleep function
* @param[in] get_timestamp_us pointer to the system specific timestamp derivation function
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
* @param[in] state_save pointer to the system-specific state save function
* @param[in] save_intvl interval at which BSEC state should be saved (in samples)
*
* @return none
*/
void bsec_iot_loop(sleep_fct sleep, get_timestamp_us_fct get_timestamp_us, output_ready_fct output_ready,
state_save_fct state_save, uint32_t save_intvl)
{
/* Timestamp variables */
int64_t time_stamp = 0;
/* BSEC sensor settings struct */
bsec_bme_settings_t sensor_settings[NUM_OF_SENS];
for (uint8_t i = 0; i < NUM_OF_SENS; i++) {
memset(&sensor_settings[i], 0, sizeof(sensor_settings[i]));
opMode[i] = sensor_settings[i].op_mode;
sensor_settings[i].next_call = 0;
}
/* BSEC sensor data */
struct bme68x_data data;
/* Save state variables */
uint8_t bsec_state[BSEC_MAX_STATE_BLOB_SIZE];
uint8_t work_buffer[BSEC_MAX_WORKBUFFER_SIZE];
uint8_t nFieldsLeft = 0;
uint32_t bsec_state_len = 0;
uint32_t n_samples = 0;
int8_t ret_val;
bsec_library_return_t bsec_status = BSEC_OK;
while (1)
{
for (uint8_t sens_no = 0; sens_no < NUM_OF_SENS; sens_no++) {
/* get the timestamp in nanoseconds before calling bsec_sensor_control() */
time_stamp = get_timestamp_us() * 1000;
if (time_stamp >= sensor_settings[sens_no].next_call)
{
/* Retrieve sensor settings to be used in this time instant by calling bsec_sensor_control */
bsec_status = bsec_sensor_control_m(bsecInstance[sens_no], time_stamp, &sensor_settings[sens_no]);
if (bsec_status != BSEC_OK)
{
if (bsec_status < BSEC_OK)
{
printf("ERROR: bsec_sensor_control: %d\n", bsec_status);
break;
}
else
{
printf("WARNING: bsec_sensor_control: %d\n", bsec_status);
}
}
switch (sensor_settings[sens_no].op_mode)
{
case BME68X_FORCED_MODE:
setBme68xConfigForced(&sensor_settings[sens_no], sens_no);
break;
case BME68X_PARALLEL_MODE:
if (opMode[sens_no] != sensor_settings[sens_no].op_mode)
{
setBme68xConfigParallel(&sensor_settings[sens_no], sens_no);
}
break;
case BME68X_SLEEP_MODE:
if (opMode[sens_no] != sensor_settings[sens_no].op_mode)
{
ret_val = bme68x_set_op_mode(BME68X_SLEEP_MODE, &bme68x_g[sens_no]);
if ((ret_val == BME68X_OK) && (opMode[sens_no] != BME68X_SLEEP_MODE))
{
opMode[sens_no] = BME68X_SLEEP_MODE;
}
}
break;
}
if (sensor_settings[sens_no].trigger_measurement && sensor_settings[sens_no].op_mode != BME68X_SLEEP_MODE)
{
nFields = 0;
bme68x_get_data(lastOpMode[sens_no], &sensor_data[0], &nFields, &bme68x_g[sens_no]);
iFields = 0;
if(nFields)
{
do
{
nFieldsLeft = getData(&data, sens_no);
/* check for valid gas data */
if (data.status & BME68X_GASM_VALID_MSK)
{
if (!processData(time_stamp, data, sensor_settings[sens_no].process_data, output_ready, sens_no))
{
return;
}
}
}while(nFieldsLeft);
}
}
/* Increment sample counter */
n_samples++;
/* Retrieve and store state if the passed save_intvl */
if (n_samples >= save_intvl)
{
bsec_status = bsec_get_state_m(bsecInstance[sens_no], 0, bsec_state, sizeof(bsec_state), work_buffer, sizeof(work_buffer), &bsec_state_len);
if (bsec_status == BSEC_OK)
{
state_save(bsec_state, bsec_state_len);
}
n_samples = 0;
}
}
}
}
}
/**
* @brief Function to assign the memory block to the bsec instance
*/
void allocateMemory(uint8_t *memBlock, uint8_t sens_no)
{
/* allocating memory for the bsec instance */
bsecInstance[sens_no] = memBlock;
}
/*! @}*/

View File

@@ -0,0 +1,240 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
*/
/*!
* @file bsec_integration.h
*
* @brief
* Contains BSEC integration API
*/
/*!
* @addtogroup bsec_examples BSEC Examples
* @brief BSEC usage examples
* @{*/
#ifndef __BSEC_INTEGRATION_H__
#define __BSEC_INTEGRATION_H__
#ifdef __cplusplus
extern "C"
{
#endif
/**********************************************************************************************************************/
/* header files */
/**********************************************************************************************************************/
#include "bme68x.h"
/* BSEC header files are available in the inc/ folder of the release package */
#include "bsec_interface_multi.h"
#include "bsec_datatypes.h"
#define BSEC_CHECK_INPUT(x, shift) (x & (1 << (shift-1)))
#define BSEC_TOTAL_HEAT_DUR UINT16_C(140)
/* Note :
For the classification output from BSEC algorithm set OUTPUT_MODE to CLASSIFICATION (default).
For the regression output from BSEC algorithm set OUTPUT_MODE to REGRESSION.
For the LP, ULP, CONT output from BSEC algorithm set OUTPUT_MODE to IAQ
*/
#define CLASSIFICATION 1
#define REGRESSION 2
#define IAQ 3
#define OUTPUT_MODE CLASSIFICATION
/* Note :
Set the appropriate "SAMPLE_RATE" based on configured "OUTPUT_MODE".
* If the "OUTPUT_MODE" value is "CLASSIFICATION" (or) "REGRESSION", the "SAMPLE_RATE" assigned is "BSEC_SAMPLE_RATE_SCAN" (default).
* If the "OUTPUT_MODE" value is "IAQ", the "SAMPLE_RATE" assigned is "BSEC_SAMPLE_RATE_ULP" (default).
* For the "OUTPUT_MODE" as "IAQ" the other supported "SAMPLE_RATE" is "BSEC_SAMPLE_RATE_CONT" (or) "BSEC_SAMPLE_RATE_LP".
*/
#if (OUTPUT_MODE == CLASSIFICATION || OUTPUT_MODE == REGRESSION)
#define SAMPLE_RATE BSEC_SAMPLE_RATE_SCAN
#elif (OUTPUT_MODE == IAQ)
#define SAMPLE_RATE BSEC_SAMPLE_RATE_ULP
#endif
#define BSEC_INSTANCE_SIZE 3272
#define NUM_OF_SENS UINT8_C(8)
/*
* The default offset provided has been determined by testing the sensor in LP and ULP mode on application board 3.0
* Please update the offset value after testing this on your product
*/
#define TEMP_OFFSET_LP (1.3255f)
#define TEMP_OFFSET_ULP (0.466f)
uint8_t bsec_mem_block[NUM_OF_SENS][BSEC_INSTANCE_SIZE];
uint8_t *bsecInstance[NUM_OF_SENS];
/**********************************************************************************************************************/
/* type definitions */
/**********************************************************************************************************************/
/* Structure to store the BSEC output values */
typedef struct
{
int64_t timestamp;
float gas_estimate_1;
float gas_estimate_2;
float gas_estimate_3;
float gas_estimate_4;
float raw_pressure;
float raw_temp;
float raw_humidity;
float raw_gas;
uint8_t raw_gas_index;
uint8_t gas_accuracy_1;
uint8_t gas_accuracy_2;
uint8_t gas_accuracy_3;
uint8_t gas_accuracy_4;
uint8_t sens_no;
float iaq;
uint8_t iaq_accuracy;
float temperature;
float humidity;
float static_iaq;
float stabStatus;
float runInStatus;
float co2_equivalent;
float breath_voc_equivalent;
float gas_percentage;
float compensated_gas;
}output_t;
/* function pointer to the system specific sleep function */
typedef void (*sleep_fct)(uint32_t t_us,void *intf_ptr);
/* function pointer to the system specific timestamp derivation function */
typedef int64_t (*get_timestamp_us_fct)();
/* function pointer to the function processing obtained BSEC outputs */
typedef void (*output_ready_fct)(output_t *output, bsec_library_return_t bsec_status);
/* function pointer to the function loading a previous BSEC state from NVM */
typedef uint32_t (*state_load_fct)(uint8_t *state_buffer, uint32_t n_buffer);
/* function pointer to the function saving BSEC state to NVM */
typedef void (*state_save_fct)(const uint8_t *state_buffer, uint32_t length);
/* function pointer to the function loading the BSEC configuration string from NVM */
typedef uint32_t (*config_load_fct)(uint8_t *state_buffer, uint32_t n_buffer);
/* structure definitions */
/* Structure with the return value from bsec_iot_init() */
typedef struct{
/*! Result of API execution status */
int8_t bme68x_status;
/*! Result of BSEC library */
bsec_library_return_t bsec_status;
}return_values_init;
/**********************************************************************************************************************/
/* function declarations */
/**********************************************************************************************************************/
/*!
* @brief Initialize the bme68x sensor and the BSEC library
*
* @param[in] sample_rate mode to be used (either BSEC_SAMPLE_RATE_ULP or BSEC_SAMPLE_RATE_LP)
* @param[in] temperature_offset device-specific temperature offset (due to self-heating)
* @param[in] bus_write pointer to the bus writing function
* @param[in] bus_read pointer to the bus reading function
* @param[in] sleep pointer to the system-specific sleep function
* @param[in] state_load pointer to the system-specific state load function
* @param[in] sens_no sensor no
*
* @return zero if successful, negative otherwise
*/
return_values_init bsec_iot_init(float sample_rate, float temperature_offset, bme68x_write_fptr_t bus_write, bme68x_read_fptr_t bus_read,
sleep_fct sleep_n, state_load_fct state_load, config_load_fct config_load, struct bme68x_dev dev, uint8_t sens_no);
/*!
* @brief Runs the main (endless) loop that queries sensor settings, applies them, and processes the measured data
*
* @param[in] sleep pointer to the system-specific sleep function
* @param[in] get_timestamp_us pointer to the system-specific timestamp derivation function
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
* @param[in] state_save pointer to the system-specific state save function
* @param[in] save_intvl interval at which BSEC state should be saved (in samples)
*
* @return return_values_init struct with the result of the API and the BSEC library
*/
void bsec_iot_loop(sleep_fct sleep_n, get_timestamp_us_fct get_timestamp_us, output_ready_fct output_ready,
state_save_fct state_save, uint32_t save_intvl);
/**
* @brief Function to assign the memory block to the bsec instance
*
* @param[in] memBlock : reference to the memory block
* @param[in] sens_no : sensor no
*/
void allocateMemory(uint8_t *memBlock, uint8_t sens_no);
#ifdef __cplusplus
}
#endif
#endif /* __BSEC_INTEGRATION_H__ */
/*! @}*/

View File

@@ -0,0 +1,563 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
* @file bsec_interface.h
*
* @brief
* Contains the API for BSEC
*
*/
#ifndef __BSEC_INTERFACE_H__
#define __BSEC_INTERFACE_H__
#include "bsec_datatypes.h"
#ifdef __cplusplus
extern "C" {
#endif
/*! @addtogroup bsec_interface BSEC Standard Interfaces
* @brief Standard interfaces of BSEC signal processing library.
* These interfaces supports in interfacing single BME68x sensor with the BSEC library.
*
* ### Interface usage
*
* The following provides a short overview on the typical operation sequence for BSEC.
*
* - Initialization of the library
*
* | Steps | Function |
* |---------------------------------------------------------------------|--------------------------|
* | Initialization of library | bsec_init() |
* | Update configuration settings (optional) | bsec_set_configuration() |
* | Restore the state of the library (optional) | bsec_set_state() |
*
*
* - The following function is called to enable output signals and define their sampling rate / operation mode.
*
* | Steps | Function |
* |---------------------------------------------|----------------------------|
* | Enable library outputs with specified mode | bsec_update_subscription() |
*
*
* - This table describes the main processing loop.
*
* | Steps | Function |
* |-------------------------------------------|----------------------------------|
* | Retrieve sensor settings to be used | bsec_sensor_control() |
* | Configure sensor and trigger measurement | [See BME68x API and example codes](https://github.com/BoschSensortec/BME68x-Sensor-API) |
* | Read results from sensor | [See BME68x API and example codes](https://github.com/BoschSensortec/BME68x-Sensor-API) |
* | Perform signal processing | bsec_do_steps() |
*
*
* - Before shutting down the system, the current state of BSEC can be retrieved and can then be used during
* re-initialization to continue processing.
*
* | Steps | Function |
* |---------------------------------------------|-------------------|
* | Retrieve the current library state | bsec_get_state() |
* | Retrieve the current library configuration | bsec_get_configuration() |
*
*
* ### Configuration and state
*
* Values of variables belonging to a BSEC instance are divided into two groups:
* - Values **not updated by processing** of signals belong to the **configuration group**. If available, BSEC can be
* configured before use with a customer specific configuration string.
* - Values **updated during processing** are member of the **state group**. Saving and restoring of the state of BSEC
* is necessary to maintain previously estimated sensor models and baseline information which is important for best
* performance of the gas sensor outputs.
*
* @note BSEC library consists of adaptive algorithms which models the gas sensor which improves its performance over
* the time. These will be lost if library is initialized due to system reset. In order to avoid this situation
* library state shall be stored in non volatile memory so that it can be loaded after system reset.
*
*
* @{
*/
/*!
* @brief Return the version information of BSEC library
*
* @param [out] bsec_version_p pointer to struct which is to be populated with the version information
*
* @return Zero if successful, otherwise an error code
*
* See also: bsec_version_t
*
\code{.c}
// Example //
bsec_version_t version;
bsec_get_version(&version);
printf("BSEC version: %d.%d.%d.%d",version.major, version.minor, version.major_bugfix, version.minor_bugfix);
\endcode
*/
bsec_library_return_t bsec_get_version(bsec_version_t * bsec_version_p);
/*!
* @brief Initialize the library
*
* Initialization and reset of BSEC is performed by calling bsec_init(). Calling this function sets up the relation
* among all internal modules, initializes run-time dependent library states and resets the configuration and state
* of all BSEC signal processing modules to defaults.
*
* Before any further use, the library must be initialized. This ensure that all memory and states are in defined
* conditions prior to processing any data.
*
* @return Zero if successful, otherwise an error code
*
\code{.c}
// Initialize BSEC library before further use
bsec_init();
\endcode
*/
bsec_library_return_t bsec_init(void);
/*!
* @brief Subscribe to library virtual sensors outputs
*
* Use bsec_update_subscription() to instruct BSEC which of the processed output signals are requested at which sample rates.
* See ::bsec_virtual_sensor_t for available library outputs.
*
* Based on the requested virtual sensors outputs, BSEC will provide information about the required physical sensor input signals
* (see ::bsec_physical_sensor_t) with corresponding sample rates. This information is purely informational as bsec_sensor_control()
* will ensure the sensor is operated in the required manner. To disable a virtual sensor, set the sample rate to ::BSEC_SAMPLE_RATE_DISABLED.
*
* The subscription update using bsec_update_subscription() is apart from the signal processing one of the the most
* important functions. It allows to enable the desired library outputs. The function determines which physical input
* sensor signals are required at which sample rate to produce the virtual output sensor signals requested by the user.
* When this function returns with success, the requested outputs are called subscribed. A very important feature is the
* retaining of already subscribed outputs. Further outputs can be requested or disabled both individually and
* group-wise in addition to already subscribed outputs without changing them unless a change of already subscribed
* outputs is requested.
*
* @note The state of the library concerning the subscribed outputs cannot be retained among reboots.
*
* The interface of bsec_update_subscription() requires the usage of arrays of sensor configuration structures.
* Such a structure has the fields sensor identifier and sample rate. These fields have the properties:
* - Output signals of virtual sensors must be requested using unique identifiers (Member of ::bsec_virtual_sensor_t)
* - Different sets of identifiers are available for inputs of physical sensors and outputs of virtual sensors
* - Identifiers are unique values defined by the library, not from external
* - Sample rates must be provided as value of
* - An allowed sample rate for continuously sampled signals
* - 65535.0f (BSEC_SAMPLE_RATE_DISABLED) to turn off outputs and identify disabled inputs
*
* @note The same sensor identifiers are also used within the functions bsec_do_steps().
*
* The usage principles of bsec_update_subscription() are:
* - Differential updates (i.e., only asking for outputs that the user would like to change) is supported.
* - Invalid requests of outputs are ignored. Also if one of the requested outputs is unavailable, all the requests
* are ignored. At the same time, a warning is returned.
* - To disable BSEC, all outputs shall be turned off. Only enabled (subscribed) outputs have to be disabled while
* already disabled outputs do not have to be disabled explicitly.
*
* @param[in] requested_virtual_sensors Pointer to array of requested virtual sensor (output) configurations for the library
* @param[in] n_requested_virtual_sensors Number of virtual sensor structs pointed by requested_virtual_sensors
* @param[out] required_sensor_settings Pointer to array of required physical sensor configurations for the library
* @param[in,out] n_required_sensor_settings [in] Size of allocated required_sensor_settings array, [out] number of sensor configurations returned
*
* @return Zero when successful, otherwise an error code
*
* @sa bsec_sensor_configuration_t
* @sa bsec_physical_sensor_t
* @sa bsec_virtual_sensor_t
*
\code{.c}
// Example //
// Change 3 virtual sensors (switch IAQ and raw temperature -> on / pressure -> off)
bsec_sensor_configuration_t requested_virtual_sensors[3];
uint8_t n_requested_virtual_sensors = 3;
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ;
requested_virtual_sensors[0].sample_rate = BSEC_SAMPLE_RATE_ULP;
requested_virtual_sensors[1].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE;
requested_virtual_sensors[1].sample_rate = BSEC_SAMPLE_RATE_ULP;
requested_virtual_sensors[2].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
requested_virtual_sensors[2].sample_rate = BSEC_SAMPLE_RATE_DISABLED;
// Allocate a struct for the returned physical sensor settings
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
// Call bsec_update_subscription() to enable/disable the requested virtual sensors
bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings, &n_required_sensor_settings);
\endcode
*
*/
bsec_library_return_t bsec_update_subscription(const bsec_sensor_configuration_t * const requested_virtual_sensors,
const uint8_t n_requested_virtual_sensors, bsec_sensor_configuration_t * required_sensor_settings,
uint8_t * n_required_sensor_settings);
/*!
* @brief Main signal processing function of BSEC
*
*
* Processing of the input signals and returning of output samples is performed by bsec_do_steps().
* - The samples of all library inputs must be passed with unique identifiers representing the input signals from
* physical sensors where the order of these inputs can be chosen arbitrary. However, all input have to be provided
* within the same time period as they are read. A sequential provision to the library might result in undefined
* behavior.
* - The samples of all library outputs are returned with unique identifiers corresponding to the output signals of
* virtual sensors where the order of the returned outputs may be arbitrary.
* - The samples of all input as well as output signals of physical as well as virtual sensors use the same
* representation in memory with the following fields:
* - Sensor identifier:
* - For inputs: required to identify the input signal from a physical sensor
* - For output: overwritten by bsec_do_steps() to identify the returned signal from a virtual sensor
* - Time stamp of the sample
*
* Calling bsec_do_steps() requires the samples of the input signals to be provided along with their time stamp when
* they are recorded and only when they are acquired. Repetition of samples with the same time stamp are ignored and
* result in a warning. Repetition of values of samples which are not acquired anew by a sensor result in deviations
* of the computed output signals. Concerning the returned output samples, an important feature is, that a value is
* returned for an output only when a new occurrence has been computed. A sample of an output signal is returned only
* once.
*
*
* @param[in] inputs Array of input data samples. Each array element represents a sample of a different physical sensor.
* @param[in] n_inputs Number of passed input data structs.
* @param[out] outputs Array of output data samples. Each array element represents a sample of a different virtual sensor.
* @param[in,out] n_outputs [in] Number of allocated output structs, [out] number of outputs returned
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate input and output memory
bsec_input_t input[3];
uint8_t n_input = 3;
bsec_output_t output[2];
uint8_t n_output=2;
bsec_library_return_t status;
// Populate the input structs, assuming the we have timestamp (ts),
// gas sensor resistance (R), temperature (T), and humidity (rH) available
// as input variables
input[0].sensor_id = BSEC_INPUT_GASRESISTOR;
input[0].signal = R;
input[0].time_stamp= ts;
input[1].sensor_id = BSEC_INPUT_TEMPERATURE;
input[1].signal = T;
input[1].time_stamp= ts;
input[2].sensor_id = BSEC_INPUT_HUMIDITY;
input[2].signal = rH;
input[2].time_stamp= ts;
// Invoke main processing BSEC function
status = bsec_do_steps( input, n_input, output, &n_output );
// Iterate through the BSEC output data, if the call succeeded
if(status == BSEC_OK)
{
for(int i = 0; i < n_output; i++)
{
switch(output[i].sensor_id)
{
case BSEC_OUTPUT_IAQ:
// Retrieve the IAQ results from output[i].signal
// and do something with the data
break;
case BSEC_OUTPUT_STATIC_IAQ:
// Retrieve the static IAQ results from output[i].signal
// and do something with the data
break;
}
}
}
\endcode
*/
bsec_library_return_t bsec_do_steps(const bsec_input_t * const inputs, const uint8_t n_inputs, bsec_output_t * outputs, uint8_t * n_outputs);
/*!
* @brief Reset a particular virtual sensor output
*
* This function allows specific virtual sensor outputs to be reset. The meaning of "reset" depends on the specific
* output. In case of the IAQ output, reset means zeroing the output to the current ambient conditions.
*
* @param[in] sensor_id Virtual sensor to be reset
*
* @return Zero when successful, otherwise an error code
*
*
\code{.c}
// Example //
bsec_reset_output(BSEC_OUTPUT_IAQ);
\endcode
*/
bsec_library_return_t bsec_reset_output(uint8_t sensor_id);
/*!
* @brief Update algorithm configuration parameters
*
* BSEC uses a default configuration for the modules and common settings. The initial configuration can be customized
* by bsec_set_configuration(). This is an optional step.
*
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose
* the serialization and apply it to the library and its modules.
*
* Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the required size.
*
* @param[in] serialized_settings Settings serialized to a binary blob
* @param[in] n_serialized_settings Size of the settings blob
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate variables
uint8_t serialized_settings[BSEC_MAX_PROPERTY_BLOB_SIZE];
uint32_t n_serialized_settings_max = BSEC_MAX_PROPERTY_BLOB_SIZE;
uint8_t work_buffer[BSEC_MAX_WORKBUFFER_SIZE];
uint32_t n_work_buffer = BSEC_MAX_WORKBUFFER_SIZE;
// Here we will load a provided config string into serialized_settings
// Apply the configuration
bsec_set_configuration(serialized_settings, n_serialized_settings_max, work_buffer, n_work_buffer);
\endcode
*/
bsec_library_return_t bsec_set_configuration(const uint8_t * const serialized_settings,
const uint32_t n_serialized_settings, uint8_t * work_buffer,
const uint32_t n_work_buffer_size);
/*!
* @brief Restore the internal state of the library
*
* BSEC uses a default state for all signal processing modules and the BSEC module. To ensure optimal performance,
* especially of the gas sensor functionality, it is recommended to retrieve the state using bsec_get_state()
* before unloading the library, storing it in some form of non-volatile memory, and setting it using bsec_set_state()
* before resuming further operation of the library.
*
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
* serialization and apply it to the library and its modules.
*
* Please use #BSEC_MAX_STATE_BLOB_SIZE for allotting the required size.
*
* @param[in] serialized_state States serialized to a binary blob
* @param[in] n_serialized_state Size of the state blob
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate variables
uint8_t serialized_state[BSEC_MAX_PROPERTY_BLOB_SIZE];
uint32_t n_serialized_state = BSEC_MAX_PROPERTY_BLOB_SIZE;
uint8_t work_buffer_state[BSEC_MAX_WORKBUFFER_SIZE];
uint32_t n_work_buffer_size = BSEC_MAX_WORKBUFFER_SIZE;
// Here we will load a state string from a previous use of BSEC
// Apply the previous state to the current BSEC session
bsec_set_state(serialized_state, n_serialized_state, work_buffer_state, n_work_buffer_size);
\endcode
*/
bsec_library_return_t bsec_set_state(const uint8_t * const serialized_state, const uint32_t n_serialized_state,
uint8_t * work_buffer, const uint32_t n_work_buffer_size);
/*!
* @brief Retrieve the current library configuration
*
* BSEC allows to retrieve the current configuration using bsec_get_configuration(). Returns a binary blob encoding
* the current configuration parameters of the library in a format compatible with bsec_set_configuration().
*
* @note The function bsec_get_configuration() is required to be used for debugging purposes only.
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
* serialization and apply it to the library and its modules.
*
* Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the required size.
*
* @param[in] config_id Identifier for a specific set of configuration settings to be returned;
* shall be zero to retrieve all configuration settings.
* @param[out] serialized_settings Buffer to hold the serialized config blob
* @param[in] n_serialized_settings_max Maximum available size for the serialized settings
* @param[in,out] work_buffer Work buffer used to parse the binary blob
* @param[in] n_work_buffer Length of the work buffer available for parsing the blob
* @param[out] n_serialized_settings Actual size of the returned serialized configuration blob
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate variables
uint8_t serialized_settings[BSEC_MAX_PROPERTY_BLOB_SIZE];
uint32_t n_serialized_settings_max = BSEC_MAX_PROPERTY_BLOB_SIZE;
uint8_t work_buffer[BSEC_MAX_WORKBUFFER_SIZE];
uint32_t n_work_buffer = BSEC_MAX_WORKBUFFER_SIZE;
uint32_t n_serialized_settings = 0;
// Configuration of BSEC algorithm is stored in 'serialized_settings'
bsec_get_configuration(0, serialized_settings, n_serialized_settings_max, work_buffer, n_work_buffer, &n_serialized_settings);
\endcode
*/
bsec_library_return_t bsec_get_configuration(const uint8_t config_id, uint8_t * serialized_settings, const uint32_t n_serialized_settings_max,
uint8_t * work_buffer, const uint32_t n_work_buffer, uint32_t * n_serialized_settings);
/*!
*@brief Retrieve the current internal library state
*
* BSEC allows to retrieve the current states of all signal processing modules and the BSEC module using
* bsec_get_state(). This allows a restart of the processing after a reboot of the system by calling bsec_set_state().
*
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
* serialization and apply it to the library and its modules.
*
* Please use #BSEC_MAX_STATE_BLOB_SIZE for allotting the required size.
*
* @param[in] state_set_id Identifier for a specific set of states to be returned; shall be
* zero to retrieve all states.
* @param[out] serialized_state Buffer to hold the serialized config blob
* @param[in] n_serialized_state_max Maximum available size for the serialized states
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer Length of the work buffer available for parsing the blob
* @param[out] n_serialized_state Actual size of the returned serialized blob
*
* @return Zero when successful, otherwise an error code
*
\code{.c}
// Example //
// Allocate variables
uint8_t serialized_state[BSEC_MAX_STATE_BLOB_SIZE];
uint32_t n_serialized_state_max = BSEC_MAX_STATE_BLOB_SIZE;
uint32_t n_serialized_state = BSEC_MAX_STATE_BLOB_SIZE;
uint8_t work_buffer_state[BSEC_MAX_WORKBUFFER_SIZE];
uint32_t n_work_buffer_size = BSEC_MAX_WORKBUFFER_SIZE;
// Algorithm state is stored in 'serialized_state'
bsec_get_state(0, serialized_state, n_serialized_state_max, work_buffer_state, n_work_buffer_size, &n_serialized_state);
\endcode
*/
bsec_library_return_t bsec_get_state(const uint8_t state_set_id, uint8_t * serialized_state,
const uint32_t n_serialized_state_max, uint8_t * work_buffer, const uint32_t n_work_buffer,
uint32_t * n_serialized_state);
/*!
* @brief Retrieve BMExxx sensor instructions
*
* The bsec_sensor_control() interface is a key feature of BSEC, as it allows an easy way for the signal processing
* library to control the operation of the BME sensor. This is important since gas sensor behaviour is mainly
* determined by how the integrated heater is configured. To ensure an easy integration of BSEC into any system,
* bsec_sensor_control() will provide the caller with information about the current sensor configuration that is
* necessary to fulfill the input requirements derived from the current outputs requested via
* bsec_update_subscription().
*
* In practice the use of this function shall be as follows:
* - Call bsec_sensor_control() which returns a bsec_bme_settings_t struct.
* - Based on the information contained in this struct, the sensor is configured and a forced-mode measurement is
* triggered if requested by bsec_sensor_control().
* - Once this forced-mode measurement is complete, the signals specified in this struct shall be passed to
* bsec_do_steps() to perform the signal processing.
* - After processing, the process should sleep until the bsec_bme_settings_t::next_call timestamp is reached.
*
*
* @param [in] time_stamp Current timestamp in [ns]
* @param[out] sensor_settings Settings to be passed to API to operate sensor at this time instance
*
* @return Zero when successful, otherwise an error code
*/
bsec_library_return_t bsec_sensor_control(const int64_t time_stamp, bsec_bme_settings_t *sensor_settings);
/*@}*/ //BSEC Interface
#ifdef __cplusplus
}
#endif
#endif /* __BSEC_INTERFACE_H__ */

View File

@@ -0,0 +1,334 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
* @file bsec_interface_multi.h
*
* @brief
* Contains the multi-instance API for BSEC
*
*/
#ifndef __BSEC_INTERFACE_MULTI_H__
#define __BSEC_INTERFACE_MULTI_H__
#include "bsec_datatypes.h"
#ifdef __cplusplus
extern "C" {
#endif
/*! @addtogroup bsec_lib_interface BSEC Multi-instance Interfaces
* @brief The multi-instance interface of BSEC signal processing library is used for interfacing multiple sensors with BSEC library.
*
* # Multi-instance interface usage
*
* The following provides a short overview on the typical operation sequence for BSEC.
*
* - Initialization of the library
*
* | Steps | Function |
* |---------------------------------------------------------------------|--------------------------|
* | Initialization of library | bsec_init_m() |
* | Update configuration settings (optional) | bsec_set_configuration_m() |
* | Restore the state of the library (optional) | bsec_set_state_m() |
*
*
* - The following function is called to enable output signals and define their sampling rate / operation mode.
*
* | Steps | Function |
* |---------------------------------------------|----------------------------|
* | Enable library outputs with specified mode | bsec_update_subscription_m() |
*
*
* - This table describes the main processing loop.
*
* | Steps | Function |
* |-------------------------------------------|----------------------------------|
* | Retrieve sensor settings to be used | bsec_sensor_control_m() |
* | Configure sensor and trigger measurement | See BME688 API and example codes |
* | Read results from sensor | See BME688 API and example codes |
* | Perform signal processing | bsec_do_steps_m() |
*
*
* - Before shutting down the system, the current state of BSEC can be retrieved and can then be used during
* re-initialization to continue processing.
*
* | Steps | Function |
* |---------------------------------------------|-------------------|
* | Retrieve the current library state | bsec_get_state_m() |
* | Retrieve the current library configuration | bsec_get_configuration_m() |
*
*
* ### Configuration and state
*
* Values of variables belonging to a BSEC instance are divided into two groups:
* - Values **not updated by processing** of signals belong to the **configuration group**. If available, BSEC can be
* configured before use with a customer specific configuration string.
* - Values **updated during processing** are member of the **state group**. Saving and restoring of the state of BSEC
* is necessary to maintain previously estimated sensor models and baseline information which is important for best
* performance of the gas sensor outputs.
*
* @note BSEC library consists of adaptive algorithms which models the gas sensor which improves its performance over
* the time. These will be lost if library is initialized due to system reset. In order to avoid this situation
* library state shall be stored in non volatile memory so that it can be loaded after system reset.
*
*
* @{
*/
/********************************************************/
/* function prototype declarations */
/*!
* @brief Function that provides the size of the internal instance in bytes.
* To be used for allocating memory for struct BSEC_STRUCT_NAME
* @return Size of the internal instance in bytes
*/
size_t bsec_get_instance_size_m(void);
/*!
* @brief Return the version information of BSEC library instance
* @param[in,out] inst Reference to the pointer containing the instance
* @param [out] bsec_version_p pointer to struct which is to be populated with the version information
*
* @return Zero if successful, otherwise an error code
*
* See also: bsec_version_t
*
*/
bsec_library_return_t bsec_get_version_m(void *inst, bsec_version_t *bsec_version_p);
/*!
* @brief Initialize the library instance
*
* Initialization and reset of BSEC library instance is performed by calling bsec_init_m() as done with bsec_init() for standard interface.
*
* @param[in,out] inst Reference to the pointer containing the instance
*
* @return Zero if successful, otherwise an error code
*
*/
bsec_library_return_t bsec_init_m(void *inst);
/*!
* @brief Subscribe to library virtual sensors outputs
*
* Like bsec_update_subscription(), bsec_update_subscription_m() is used to instruct BSEC which of the processed output signals
* of the library instance are requested at which sample rates.
*
* @param[in,out] inst Reference to the pointer containing the instance
* @param[in] requested_virtual_sensors Pointer to array of requested virtual sensor (output) configurations for the library
* @param[in] n_requested_virtual_sensors Number of virtual sensor structs pointed by requested_virtual_sensors
* @param[out] required_sensor_settings Pointer to array of required physical sensor configurations for the library
* @param[in,out] n_required_sensor_settings [in] Size of allocated required_sensor_settings array, [out] number of sensor configurations returned
*
* @return Zero when successful, otherwise an error code
*
* @sa bsec_sensor_configuration_t
* @sa bsec_physical_sensor_t
* @sa bsec_virtual_sensor_t
*
*/
bsec_library_return_t bsec_update_subscription_m(void *inst, const bsec_sensor_configuration_t *const requested_virtual_sensors,
const uint8_t n_requested_virtual_sensors, bsec_sensor_configuration_t *required_sensor_settings,
uint8_t *n_required_sensor_settings);
/*!
* @brief Main signal processing function of BSEC library instance
*
*
* Processing of the input signals and returning of output samples for each instances of BSEC library is performed by bsec_do_steps_m().
* bsec_do_steps_m() processes multiple instaces of BSEC library simillar to how bsec_do_steps() handles single instance.
*
* @param[in,out] inst Reference to the pointer containing the instance
* @param[in] inputs Array of input data samples. Each array element represents a sample of a different physical sensor.
* @param[in] n_inputs Number of passed input data structs.
* @param[out] outputs Array of output data samples. Each array element represents a sample of a different virtual sensor.
* @param[in,out] n_outputs [in] Number of allocated output structs, [out] number of outputs returned
*
* @return Zero when successful, otherwise an error code
*
*/
bsec_library_return_t bsec_do_steps_m(void *inst, const bsec_input_t *const inputs, const uint8_t n_inputs, bsec_output_t *outputs, uint8_t *n_outputs);
/*!
* @brief Reset a particular virtual sensor output of the library instance
*
* This function allows specific virtual sensor outputs of each library instance to be reset.
* It processes in same way as bsec_reset_output().
*
* @param[in,out] inst Reference to the pointer containing the instance
* @param[in] sensor_id Virtual sensor to be reset
*
* @return Zero when successful, otherwise an error code
*
*/
bsec_library_return_t bsec_reset_output_m(void *inst, uint8_t sensor_id);
/*!
* @brief Update algorithm configuration parameters of the library instance
*
* As done with bsec_set_configuration(), the initial configuration of BSEC libray instance can be customized
* by bsec_set_configuration_m(). This is an optional step.
*
* Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the required size.
*
* @param[in,out] inst Reference to the pointer containing the instance
* @param[in] serialized_settings Settings serialized to a binary blob
* @param[in] n_serialized_settings Size of the settings blob
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob
*
* @return Zero when successful, otherwise an error code
*
*/
bsec_library_return_t bsec_set_configuration_m(void *inst, const uint8_t *const serialized_settings,
const uint32_t n_serialized_settings, uint8_t *work_buffer,
const uint32_t n_work_buffer_size);
/*!
* @brief Restore the internal state of the library instance
*
* BSEC uses a default state for all signal processing modules and the BSEC module for each instance. To ensure optimal performance,
* especially of the gas sensor functionality, it is recommended to retrieve the state using bsec_get_state_m()
* before unloading the library, storing it in some form of non-volatile memory, and setting it using bsec_set_state_m()
* before resuming further operation of the library.
*
* Please use #BSEC_MAX_STATE_BLOB_SIZE for allotting the required size.
*
* @param[in,out] inst Reference to the pointer containing the instance
* @param[in] serialized_state States serialized to a binary blob
* @param[in] n_serialized_state Size of the state blob
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob
*
* @return Zero when successful, otherwise an error code
*
*/
bsec_library_return_t bsec_set_state_m(void *inst, const uint8_t *const serialized_state, const uint32_t n_serialized_state,
uint8_t *work_buffer, const uint32_t n_work_buffer_size);
/*!
* @brief Retrieve the current library instance configuration
*
* BSEC allows to retrieve the current configuration of the library instance using bsec_get_configuration_m().
* In the same way as bsec_get_configuration(), this API returns a binary blob encoding
* the current configuration parameters of the library in a format compatible with bsec_set_configuration_m().
*
* Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the required size.
*
* @param[in,out] inst Reference to the pointer containing the instance
* @param[in] config_id Identifier for a specific set of configuration settings to be returned;
* shall be zero to retrieve all configuration settings.
* @param[out] serialized_settings Buffer to hold the serialized config blob
* @param[in] n_serialized_settings_max Maximum available size for the serialized settings
* @param[in,out] work_buffer Work buffer used to parse the binary blob
* @param[in] n_work_buffer Length of the work buffer available for parsing the blob
* @param[out] n_serialized_settings Actual size of the returned serialized configuration blob
*
* @return Zero when successful, otherwise an error code
*
*/
bsec_library_return_t bsec_get_configuration_m(void *inst, const uint8_t config_id, uint8_t *serialized_settings, const uint32_t n_serialized_settings_max,
uint8_t *work_buffer, const uint32_t n_work_buffer, uint32_t *n_serialized_settings);
/*!
*@brief Retrieve the current internal library instance state
*
* BSEC allows to retrieve the current states of all signal processing modules and the BSEC module of the library instance using
* bsec_get_state_m(). As done by bsec_get_state(), this allows a restart of the processing after a reboot of the system by calling bsec_set_state_m().
*
* Please use #BSEC_MAX_STATE_BLOB_SIZE for allotting the required size.
*
* @param[in,out] inst Reference to the pointer containing the instance
* @param[in] state_set_id Identifier for a specific set of states to be returned; shall be
* zero to retrieve all states.
* @param[out] serialized_state Buffer to hold the serialized config blob
* @param[in] n_serialized_state_max Maximum available size for the serialized states
* @param[in,out] work_buffer Work buffer used to parse the blob
* @param[in] n_work_buffer Length of the work buffer available for parsing the blob
* @param[out] n_serialized_state Actual size of the returned serialized blob
*
* @return Zero when successful, otherwise an error code
*
*/
bsec_library_return_t bsec_get_state_m(void *inst, const uint8_t state_set_id, uint8_t *serialized_state,
const uint32_t n_serialized_state_max, uint8_t *work_buffer, const uint32_t n_work_buffer,
uint32_t *n_serialized_state);
/*!
* @brief Retrieve BMExxx sensor instructions for the library instance
*
* The bsec_sensor_control_m() allows an easy way for the signal processing library to control the operation of the
* BME sensor which uses the correspodning BSEC library instance. Operation of bsec_sensor_control_m() is simillar to bsec_sensor_control()
* except that former API supports multiples library instances.
*
* @param[in,out] inst Reference to the pointer containing the instance
* @param [in] time_stamp Current timestamp in [ns]
* @param[out] sensor_settings Settings to be passed to API to operate sensor at this time instance
*
* @return Zero when successful, otherwise an error code
*/
bsec_library_return_t bsec_sensor_control_m(void *inst, const int64_t time_stamp, bsec_bme_settings_t *sensor_settings);
/*@}*/ //BSEC Interface
#ifdef __cplusplus
}
#endif
#endif /* __BSEC_INTERFACE_MULTI_H__ */

View File

@@ -0,0 +1,249 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
*/
/*!
* @file bsec_iot_example.c
*
* @brief
* Example for using of BSEC library in a fixed configuration with the BME68x sensor.
* This works by running an endless loop in the bsec_iot_loop() function.
*/
/*!
* @addtogroup bsec_examples BSEC Examples
* @brief BSEC usage examples
* @{*/
/**********************************************************************************************************************/
/* header files */
/**********************************************************************************************************************/
#include "bsec_integration.h"
/**********************************************************************************************************************/
/* functions */
/**********************************************************************************************************************/
/*!
* @brief Write operation in either Wire or SPI
*
* param[in] reg_addr register address
* param[in] reg_data_ptr pointer to the data to be written
* param[in] data_len number of bytes to be written
* param[in] intf_ptr interface pointer
*
* @return result of the bus communication function
*/
int8_t bus_write(uint8_t reg_addr, const uint8_t *reg_data_ptr, uint32_t data_len, void *intf_ptr)
{
// ...
// Please insert system specific function to write to the bus where BME68x is connected
// ...
return 0;
}
/*!
* @brief Read operation in either Wire or SPI
*
* param[in] reg_addr register address
* param[out] reg_data_ptr pointer to the memory to be used to store the read data
* param[in] data_len number of bytes to be read
* param[in] intf_ptr interface pointer
*
* @return result of the bus communication function
*/
int8_t bus_read(uint8_t reg_addr, uint8_t *reg_data_ptr, uint32_t data_len, void *intf_ptr)
{
// ...
// Please insert system specific function to read from bus where BME68x is connected
// ...
return 0;
}
/*!
* @brief System specific implementation of sleep function
*
* @param[in] t_us Time in microseconds
* @param[in] intf_ptr Pointer to the interface descriptor
*
* @return none
*/
void sleep_n(uint32_t t_us, void *intf_ptr)
{
// ...
// Please insert system specific function sleep or delay for t_ms milliseconds
// ...
}
/*!
* @brief Capture the system time in microseconds
*
* @return system_current_time current system timestamp in microseconds
*/
int64_t get_timestamp_us()
{
int64_t system_current_time = 0;
// ...
// Please insert system specific function to retrieve a timestamp (in microseconds)
// ...
return system_current_time;
}
/*!
* @brief Handling of the ready outputs
*
* @param[in] outputs output_t structure
* @param[in] bsec_status value returned by the bsec_do_steps() call
*
* @return none
*/
void output_ready(output_t *outputs, bsec_library_return_t bsec_status)
{
// ...
// Please insert system specific code to further process or display the BSEC outputs
// ...
}
/*!
* @brief Load previous library state from non-volatile memory
*
* @param[in,out] state_buffer buffer to hold the loaded state string
* @param[in] n_buffer size of the allocated state buffer
*
* @return number of bytes copied to state_buffer
*/
uint32_t state_load(uint8_t *state_buffer, uint32_t n_buffer)
{
// ...
// Load a previous library state from non-volatile memory, if available.
//
// Return zero if loading was unsuccessful or no state was available,
// otherwise return length of loaded state string.
// ...
return 0;
}
/*!
* @brief Save library state to non-volatile memory
*
* @param[in] state_buffer buffer holding the state to be stored
* @param[in] length length of the state string to be stored
*
* @return none
*/
void state_save(const uint8_t *state_buffer, uint32_t length)
{
// ...
// Save the string some form of non-volatile memory, if possible.
// ...
}
/*!
* @brief Load library config from non-volatile memory
*
* @param[in,out] config_buffer buffer to hold the loaded state string
* @param[in] n_buffer size of the allocated state buffer
*
* @return number of bytes copied to config_buffer
*/
uint32_t config_load(uint8_t *config_buffer, uint32_t n_buffer)
{
// ...
// Load a library config from non-volatile memory, if available.
//
// Return zero if loading was unsuccessful or no config was available,
// otherwise return length of loaded config string.
// ...
return 0;
}
/*!
* @brief Main function which configures BSEC library and then reads and processes the data from sensor based
* on timer ticks
*
* @return result of the processing
*/
int main()
{
return_values_init ret;
struct bme68x_dev bme_dev;
memset(&bme_dev,0,sizeof(bme_dev));
/* Call to the function which initializes the BSEC library
* Switch on low-power mode and provide no temperature offset */
ret = bsec_iot_init(BSEC_SAMPLE_RATE_LP, 0.0f, bus_write, bus_read, sleep_n, state_load, config_load, bme_dev, 0);
if (ret.bme68x_status)
{
/* Could not intialize BME68x */
return (int)ret.bme68x_status;
}
else if (ret.bsec_status)
{
/* Could not intialize BSEC library */
return (int)ret.bsec_status;
}
/* Call to endless loop function which reads and processes data based on sensor settings */
/* State is saved every 10.000 samples, which means every 10.000 * 3 secs = 500 minutes */
bsec_iot_loop(sleep_n, get_timestamp_us, output_ready, state_save, 10000);
return 0;
}
/*! @}*/

View File

@@ -0,0 +1,356 @@
/**
* Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential.
*
* Disclaimer
*
* Common:
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
* The resale and/or use of products are at the purchaser's own risk and his own responsibility. The
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
*
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
* incidental, or consequential damages, arising from any product use not covered by the parameters of
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
* Sensortec for all costs in connection with such claims.
*
* The purchaser must monitor the market for the purchased products, particularly with regard to
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
*
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
* technical specifications of the product series. They are therefore not intended or fit for resale to third
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
* samples.
*
* Special:
* This software module (hereinafter called "Software") and any information on application-sheets
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
* application work. The Software and Information is subject to the following terms and conditions:
*
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
* personnel who have special experience and training. Do not use this Software if you do not have the
* proper experience or training.
*
* This Software package is provided `` as is `` and without any expressed or implied warranties,
* including without limitation, the implied warranties of merchantability and fitness for a particular
* purpose.
*
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
* otherwise stipulated in mandatory applicable law.
*
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
* responsibility for the consequences of use of such Information nor for any infringement of patents or
* other rights of third parties which may result from its use. No license is granted by implication or
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
* subject to change without notice.
*
* It is not allowed to deliver the source code of the Software to any third party without permission of
* Bosch Sensortec.
*
*/
/*!
* @file bsec_iot_example.ino
*
* @brief
* Example for using of BSEC library in a fixed configuration with the BME68x sensor.
* This works by running an endless loop in the bsec_iot_loop() function.
*/
/*!
* @addtogroup bsec_examples BSEC Examples
* @brief BSEC usage examples
* @{*/
/**********************************************************************************************************************/
/* header files */
/**********************************************************************************************************************/
#include "bsec_integration.h"
#include "commMux.h"
#include "bsec_selectivity.h"
#include <Wire.h>
String output;
uint32_t overflowCounter;
uint32_t lastTimeMS;
commMux communicationSetup[NUM_OF_SENS];
/**********************************************************************************************************************/
/* functions */
/**********************************************************************************************************************/
/*!
* @brief Write operation in either Wire or SPI
*
* param[in] reg_addr register address
* param[in] reg_data_ptr pointer to the data to be written
* param[in] data_len number of bytes to be written
* param[in] intf_ptr interface pointer
*
* @return result of the bus communication function
*/
int8_t bus_write(uint8_t reg_addr, const uint8_t *reg_data_ptr, uint32_t data_len, void *intf_ptr)
{
uint8_t dev_addr = *(uint8_t*)intf_ptr;
Wire.beginTransmission(dev_addr);
Wire.write(reg_addr); /* Set register address to start writing to */
/* Write the data */
for (int index = 0; index < data_len; index++) {
Wire.write(reg_data_ptr[index]);
}
return (int8_t)Wire.endTransmission();
}
/*!
* @brief Read operation in either Wire or SPI
*
* param[in] reg_addr register address
* param[out] reg_data_ptr pointer to the memory to be used to store the read data
* param[in] data_len number of bytes to be read
* param[in] intf_ptr interface pointer
*
* @return result of the bus communication function
*/
int8_t bus_read(uint8_t reg_addr, uint8_t *reg_data_ptr, uint32_t data_len, void *intf_ptr)
{
int8_t comResult = 0;
uint8_t dev_addr = *(uint8_t*)intf_ptr;
Wire.beginTransmission(dev_addr);
Wire.write(reg_addr); /* Set register address to start reading from */
comResult = Wire.endTransmission();
delayMicroseconds(150); /* Precautionary response delay */
Wire.requestFrom(dev_addr, (uint8_t)data_len); /* Request data */
int index = 0;
while (Wire.available()) /* The slave device may send less than requested (burst read) */
{
reg_data_ptr[index] = Wire.read();
index++;
}
return comResult;
}
/*!
* @brief System specific implementation of sleep function
*
* @param[in] t_us Time in microseconds
* @param[in] intf_ptr Pointer to the interface descriptor
*
* @return none
*/
void sleep_n(uint32_t t_us, void *intf_ptr)
{
delay(t_us / 1000);
}
/*!
* @brief Capture the system time in microseconds
*
* @return system_current_time current system timestamp in microseconds
*/
int64_t get_timestamp_us()
{
int64_t timeMs = millis() * 1000;
if (lastTimeMS > timeMs) /* An overflow occurred */
{
overflowCounter++;
}
lastTimeMS = timeMs;
return timeMs + (overflowCounter * INT64_C(0xFFFFFFFF));
}
/*!
* @brief Handling of the ready outputs
*
* @param[in] outputs output_t structure
* @param[in] bsec_status value returned by the bsec_do_steps() call
*
* @return none
*/
void output_ready(output_t *outputs, bsec_library_return_t bsec_status)
{
digitalWrite(LED_BUILTIN, LOW);
float timestamp_ms = outputs->timestamp/1e6;
output = String(outputs->sens_no) + ",";
output += String(timestamp_ms) + ", ";
#if (OUTPUT_MODE == CLASSIFICATION || OUTPUT_MODE == REGRESSION)
output += String(outputs->gas_estimate_1) + ", ";
output += String(outputs->gas_estimate_2) + ", ";
output += String(outputs->gas_estimate_3) + ", ";
output += String(outputs->gas_estimate_4) + ", ";
output += String(outputs->gas_accuracy_1) + ", ";
output += String(outputs->gas_accuracy_2) + ", ";
output += String(outputs->gas_accuracy_3) + ", ";
output += String(outputs->gas_accuracy_4) + ", ";
output += String(outputs->raw_pressure) + ", ";
output += String(outputs->raw_temp) + ", ";
output += String(outputs->raw_humidity) + ", ";
output += String(outputs->raw_gas) + ", ";
output += String(outputs->raw_gas_index) + ", ";
#elif (OUTPUT_MODE == IAQ)
output += String(outputs->iaq) + ", ";
output += String(outputs->iaq_accuracy) + ", ";
output += String(outputs->static_iaq) + ", ";
output += String(outputs->raw_temp) + ", ";
output += String(outputs->raw_humidity) + ", ";
output += String(outputs->temperature) + ", ";
output += String(outputs->humidity) + ", ";
output += String(outputs->raw_pressure) + ", ";
output += String(outputs->raw_gas) + ", ";
output += String(outputs->gas_percentage) + ", ";
output += String(outputs->co2_equivalent) + ", ";
output += String(outputs->breath_voc_equivalent) + ", ";
output += String(outputs->stabStatus) + ", ";
output += String(outputs->runInStatus) + ", ";
output += String(outputs->compensated_gas) + ", ";
#endif
output += String(bsec_status);
Serial.println(output);
digitalWrite(LED_BUILTIN, HIGH);
}
/*!
* @brief Load previous library state from non-volatile memory
*
* @param[in,out] state_buffer buffer to hold the loaded state string
* @param[in] n_buffer size of the allocated state buffer
*
* @return number of bytes copied to state_buffer
*/
uint32_t state_load(uint8_t *state_buffer, uint32_t n_buffer)
{
// ...
// Load a previous library state from non-volatile memory, if available.
//
// Return zero if loading was unsuccessful or no state was available,
// otherwise return length of loaded state string.
// ...
return 0;
}
/*!
* @brief Save library state to non-volatile memory
*
* @param[in] state_buffer buffer holding the state to be stored
* @param[in] length length of the state string to be stored
*
* @return none
*/
void state_save(const uint8_t *state_buffer, uint32_t length)
{
// ...
// Save the string some form of non-volatile memory, if possible.
// ...
}
/*!
* @brief Load library config from non-volatile memory
*
* @param[in,out] config_buffer buffer to hold the loaded state string
* @param[in] n_buffer size of the allocated state buffer
*
* @return number of bytes copied to config_buffer
*/
uint32_t config_load(uint8_t *config_buffer, uint32_t n_buffer)
{
memcpy(config_buffer, bsec_config_selectivity, n_buffer);
return n_buffer;
}
/*!
* @brief Main function which configures BSEC library and then reads and processes the data from sensor based
* on timer ticks
*
* @return result of the processing
*/
void setup()
{
return_values_init ret;
pinMode(LED_BUILTIN, OUTPUT);
/* Init I2C and serial communication */
Wire.begin();
commMuxBegin(Wire, SPI);
Serial.begin(115200);
delay(1000);
struct bme68x_dev bme_dev[NUM_OF_SENS];
for (uint8_t i = 0; i < NUM_OF_SENS; i++) {
/* Sets the Communication interface for the given sensor */
communicationSetup[i] = commMuxSetConfig(Wire, SPI, i/*SENS_NUM*/, communicationSetup[i]);
memset(&bme_dev[i],0,sizeof(bme_dev[i]));
bme_dev[i].intf = BME68X_SPI_INTF;
bme_dev[i].read = commMuxRead;
bme_dev[i].write = commMuxWrite;
bme_dev[i].delay_us = commMuxDelay;
bme_dev[i].intf_ptr = &communicationSetup[i];
bme_dev[i].amb_temp = 25;
/* Assigning a chunk of memory block to the bsecInstance */
allocateMemory(bsec_mem_block[i], i);
/* Call to the function which initializes the BSEC library
* Switch on low-power mode and provide no temperature offset */
ret = bsec_iot_init(SAMPLE_RATE, 0.0f, bus_write, bus_read, sleep_n, state_load, config_load, bme_dev[i], i);
if (ret.bme68x_status)
{
/* Could not initialize BME68x */
Serial.println("ERROR while initializing BME68x:"+String(ret.bme68x_status));
return;
}
else if (ret.bsec_status < BSEC_OK)
{
printf("\nERROR while initializing BSEC library: %d\n", ret.bsec_status);
return;
}
else if (ret.bsec_status > BSEC_OK)
{
printf("\nWARNING while initializing BSEC library: %d\n", ret.bsec_status);
}
}
bsec_version_t version;
bsec_get_version_m(bsecInstance, &version);
Serial.println("\nBSEC library version " + String(version.major) + "." + String(version.minor) + "." \
+ String(version.major_bugfix) + "." + String(version.minor_bugfix));
#if (OUTPUT_MODE == CLASSIFICATION || OUTPUT_MODE == REGRESSION)
String file_header = "\nSensor_No, Time(ms), Class/Target_1_prediction, Class/Target_2_prediction, Class/Target_3_prediction, Class/Target_4_prediction, Prediction_accuracy_1, Prediction_accuracy_2, Prediction_accuracy_3, Prediction_accuracy_4, Raw_pressure(Pa), Raw_Temperature(degC), Raw_Humidity(%rH), Raw_Gas(ohm), Raw_Gas_Index(num), Bsec_status";
#elif (OUTPUT_MODE == IAQ)
String file_header = "\nSensor_No, Time(ms), IAQ, IAQ_accuracy, Static_IAQ, Raw_Temperature(degC), Raw_Humidity(%rH), Comp_Temperature(degC), Comp_Humidity(%rH), Raw_pressure(Pa), Raw_Gas(ohms), Gas_percentage, CO2, bVOC, Stabilization_status, Run_in_status, Compensated_gas, Bsec_status";
#endif
Serial.println(file_header);
/* Call to endless loop function which reads and processes data based on sensor settings */
/* State is saved every 10.000 samples, which means every 10.000 * 3 secs = 500 minutes */
bsec_iot_loop(sleep_n, get_timestamp_us, output_ready, state_save, 10000);
}
void loop()
{
}
/*! @}*/

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,4 @@
#include <stdint.h>
extern const uint8_t bsec_config_selectivity[1943];

View File

@@ -0,0 +1,165 @@
/**
Copyright (c) 2021 Bosch Sensortec GmbH. All rights reserved.
BSD-3-Clause
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
@file commMux.cpp
@date 19 September 2022
@version 2.0.2
*/
#include "commMux.h"
#define CLOCK_FREQUENCY 400000
#define COMM_SPEED 8000000
const uint8_t I2C_EXPANDER_ADDR = 0x20;
const uint8_t I2C_EXPANDER_OUTPUT_REG_ADDR = 0x01;
const uint8_t I2C_EXPANDER_OUTPUT_DESELECT = 0xFF;
const uint8_t I2C_EXPANDER_CONFIG_REG_ADDR = 0x03;
const uint8_t I2C_EXPANDER_CONFIG_REG_MASK = 0x00;
/**
* @brief Function to configure the communication across sensors
*/
commMux commMuxSetConfig(TwoWire &wireobj, SPIClass &spiobj, uint8_t idx, commMux &comm)
{
comm.select = ((0x01 << idx) ^ 0xFF);
comm.spiobj = &spiobj;
comm.wireobj = &wireobj;
return comm;
}
/**
* @brief Function to trigger the communication
*/
void commMuxBegin(TwoWire &wireobj, SPIClass &spiobj)
{
wireobj.begin();
wireobj.setClock(CLOCK_FREQUENCY);
wireobj.beginTransmission(I2C_EXPANDER_ADDR);
wireobj.write(I2C_EXPANDER_CONFIG_REG_ADDR);
wireobj.write(I2C_EXPANDER_CONFIG_REG_MASK);
wireobj.endTransmission();
spiobj.begin();
}
/**
* @brief Function to set the ship select pin of the SPI
*/
static void setChipSelect(TwoWire *wireobj, uint8_t mask)
{
// send I2C-Expander device address
wireobj->beginTransmission(I2C_EXPANDER_ADDR);
// send I2C-Expander output register address
wireobj->write(I2C_EXPANDER_OUTPUT_REG_ADDR);
// send mask to set output level of GPIO pins
wireobj->write(mask);
// end communication
wireobj->endTransmission();
}
/**
* @brief Function to write the sensor data to the register
*/
int8_t commMuxWrite(uint8_t reg_addr, const uint8_t *reg_data, uint32_t length, void *intf_ptr)
{
commMux *comm = (commMux*) intf_ptr;
uint32_t i;
if (comm)
{
setChipSelect(comm->wireobj, comm->select);
comm->spiobj->beginTransaction(SPISettings(COMM_SPEED, MSBFIRST, SPI_MODE0));
comm->spiobj->transfer(reg_addr);
for (i = 0; i < length; i++)
{
comm->spiobj->transfer(reg_data[i]);
}
comm->spiobj->endTransaction();
setChipSelect(comm->wireobj, I2C_EXPANDER_OUTPUT_DESELECT);
return 0;
}
return 1;
}
/**
* @brief Function to read the sensor data from the register
*/
int8_t commMuxRead(uint8_t reg_addr, uint8_t *reg_data, uint32_t length, void *intf_ptr)
{
commMux *comm = (commMux*) intf_ptr;
uint32_t i;
if (comm)
{
setChipSelect(comm->wireobj, comm->select);
comm->spiobj->beginTransaction(SPISettings(COMM_SPEED, MSBFIRST, SPI_MODE0));
comm->spiobj->transfer(reg_addr);
for (i = 0; i < length; i++)
{
reg_data[i] = comm->spiobj->transfer(0xFF);
}
comm->spiobj->endTransaction();
setChipSelect(comm->wireobj, I2C_EXPANDER_OUTPUT_DESELECT);
return 0;
}
return 1;
}
void commMuxSwitch(void *intf_ptr)
{
commMux *comm = (commMux*) intf_ptr;
if (comm)
{
setChipSelect(comm->wireobj, comm->select);
}
}
/**
* @brief Function to maintain a delay between communication
*/
void commMuxDelay(uint32_t period_us, void *intf_ptr)
{
(void) intf_ptr;
delayMicroseconds(period_us);
}

100
bsec_iot_example/commMux.h Normal file
View File

@@ -0,0 +1,100 @@
/**
Copyright (c) 2021 Bosch Sensortec GmbH. All rights reserved.
BSD-3-Clause
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
@file commMux.h
@date 19 September 2022
@version 2.0.2
*/
#ifndef COMM_MUX_H
#define COMM_MUX_H
#include "Arduino.h"
#include "Wire.h"
#include "SPI.h"
/**
* Datatype working as an interface descriptor
*/
typedef struct {
TwoWire *wireobj;
SPIClass *spiobj;
uint8_t select;
} commMux;
/**
* @brief Function to configure the communication across sensors
* @param wireobj : The TwoWire object
* @param spiobj : The SPIClass object
* @param idx : Selected sensor for communication interface
* @param comm : Structure for selected sensor
* @return : Structure holding the communication setup
*/
commMux commMuxSetConfig(TwoWire &wireobj, SPIClass &spiobj, uint8_t idx, commMux &comm);
/**
* @brief Function to trigger the communication
* @param wireobj : The TwoWire object
* @param spiobj : The SPIClass object
*/
void commMuxBegin(TwoWire &wireobj, SPIClass &spiobj);
/**
* @brief Function to write the sensor data to the register
* @param reg_addr : Address of the register
* @param reg_data : Pointer to the data to be written
* @param length : length of the register data
* @param intf_ptr : Pointer to the interface descriptor
* @return 0 if successful, non-zero otherwise
*/
int8_t commMuxWrite(uint8_t reg_addr, const uint8_t *reg_data, uint32_t length, void *intf_ptr);
/**
* @brief Function to read the sensor data from the register
* @param reg_addr : Address of the register
* @param reg_data : Pointer to the data to be read from the sensor
* @param length : length of the register data
* @param intf_ptr : Pointer to the interface descriptor
* @return 0 if successful, non-zero otherwise
*/
int8_t commMuxRead(uint8_t reg_addr, uint8_t *reg_data, uint32_t length, void *intf_ptr);
/**
* @brief Function to maintain a delay between communication
* @param period_us : Time delay in micro secs
* @param intf_ptr : Pointer to the interface descriptor
*/
void commMuxDelay(uint32_t period_us, void *intf_ptr);
void commMuxSwitch(void *intf_ptr);
#endif /* COMM_MUX_H */